Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta so sánh: \(\sqrt{3}-\sqrt{2}\) và \(\sqrt{7}-\sqrt{6}\)
\(\sqrt{3}-\sqrt{2}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\frac{3-2}{\sqrt{3}+\sqrt{2}}=\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\sqrt{7}-\sqrt{6}=\frac{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\sqrt{7}+\sqrt{6}}=\frac{7-6}{\sqrt{7}+\sqrt{6}}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Vì \(\sqrt{3}+\sqrt{2}< \sqrt{7}+\sqrt{6}\)
nên \(\frac{1}{\sqrt{3}+\sqrt{2}}>\frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{7}-\sqrt{6}\)
\(\Rightarrow\sqrt{3}+\sqrt{6}>\sqrt{7}+\sqrt{2}\) hay x > y
![](https://rs.olm.vn/images/avt/0.png?1311)
x =
\(\sqrt{3}\)= 1,732050808
\(\sqrt{6}\)= 2,449489743
1,732050808+2,449489743 = 4,181540551
y =
\(\sqrt{2}\)= 1,414213562
\(\sqrt{7}\)= 2,645751311
1,414213562+2,645751311 = 4,059964873
Vì 4,181540551 > 4,059964873 nên x > y
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
![](https://rs.olm.vn/images/avt/0.png?1311)
giải thích giùm mình với
bn giải thích đi rồi mik tích đúng cho
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)
= 0,2 . 10 - \(\dfrac{4}{5}\)
= 2 - \(\dfrac{4}{5}\)
= \(\dfrac{6}{5}\)
1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)
\(=0,2.10-0,8\)
\(=2-0,8=1,2\)
2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)
\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)
3/ \(\sqrt{0,01}-\sqrt{0,25}\)
\(=0,1-0,5\)
\(=-0,4\)
4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
\(=0,5.10-0,5\)
\(=5-0,5=4,5\)
5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)
\(=7.0,1+2.0,5\)
\(=0,7+1=1,7\)
6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)
\(=0,5.10-0,2\)
\(=5-0,2=4,8\)
\(x=\sqrt{0,01}+\sqrt{0,04}+...+\sqrt{0,81}\)
\(x=0,1+0,2+...+0,9\)
\(x=4,5\)
\(y=\sqrt{0,25}=0,5\)
\(\Rightarrow x>y\)
\(x=\sqrt{0,01}+\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}+...+\sqrt{0,81}\\ =\sqrt{\left(0,1\right)^2}+\sqrt{\left(0,2\right)^2}+\sqrt{\left(0,3\right)^2}+\sqrt{\left(0,4\right)^2}+...+\sqrt{\left(0,9\right)^2}\\ =0,1+0,2+0,3+0,4+...+0,9\)
\(y=\sqrt{0,25}=\sqrt{\left(0,5\right)^2}=0,5\)
Hiển nhiên x>y