K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2024

\(x+8⋮6,y+2012⋮6\)

\(\Rightarrow x,y⋮2\) và \(x,y\) chia 3 dư 1.

Vì \(x,y⋮2\) và \(4^x⋮2\) nên \(4^x+x+y⋮2\)

Vì 4 chia 3 dư 1 nên \(4^x\) chia 3 dư 1. Lại có \(x,y\) chia 3 dư 1 nên \(4^x+x+y⋮3\)

Từ đó suy ra \(4^x+x+y⋮6\)

2 tháng 9 2021

x^2 = -y^2 mod p,tức (-1/p) =1 tức p=1 mod 4

2 tháng 9 2021

Hoặc cả 2 x,y cùng chia hết cho p

13 tháng 2 2016

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  chia hết xy+1

13 tháng 2 2016

Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1

Hay x^2y^2 +y^2 chia hết xy+1.

Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1   Thêm và bớt 2xy+1

=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1

=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1  Chia hết xy+1

7 tháng 3 2021

Do vai trò bình đẳng của x, y, z trong phương trình,

trước hết ta xét x ≤ y ≤ z.

Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z

=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.

Nếu xy = 1 => x = y = 1,

thay vào (2) ta có : 2 + z = z, vô lí.

Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,

thay vào (2), => z = 3.Nếu xy = 3,

do x ≤ y nên x = 1 và y = 3,

thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

7 tháng 3 2021

phần kia thì chịu :)

8 tháng 8 2016

ta có : \(2^{33}\equiv8\)(mod31)

\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)

\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)

\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)

=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)

vậy số dư pháp chia trên là 2

12 tháng 4 2016

Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)

Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y

=> yk \(<\) 2y

=> k\(<\)  2

Mà k là một là một số tự nhiên khác 0

Nên k=1

Thay k = x+1 vào y+1 ta được

        x+1+1 = x+2 chia hết cho x

Mà x chia hết cho x nên 2 chia hết cho x

=> x\(\in\left\{1;2\right\}\)

Với x=1 thì y=x+1=1+1=2

Với x=2 thì y=2+1=3

Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)