K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2024

\(\dfrac{9^3}{\left(3^4-3^3\right)^2}=\dfrac{\left(3^2\right)^3}{3^8-3^6}=\dfrac{3^6}{3^6\cdot\left(3^2-1\right)}=\dfrac{1}{8}\\ 5^2\cdot10^2=\left(5\cdot10\right)^2=50^2=2500\)

Vì: \(\dfrac{1}{8}< 2500\rightarrow\) \(\dfrac{9^3}{\left(3^4-3^3\right)^2}< 5^2\cdot10^2\)

\(\dfrac{9^3}{\left(3^4-3^3\right)^2}=\dfrac{3^6}{\left[3^3\left(3-1\right)\right]^2}=\dfrac{3^6}{3^6\cdot2^2}=\dfrac{1}{2^2}=\dfrac{1}{4}< 5^2\cdot10^2\)

3 tháng 10 2015

2A=8(32+1)(34+1)......(364+1)

2A=(32-1)(32+1)(34+1)......(364+1)

2A=(34-1)((34+1)....(364+1)

2A=(364-1)(364+1)

2A=3128-1

Ta có :2A=B=>A<B

6 tháng 10 2015

nhiều v~~~, dễ mà lp 8 ? 

18 tháng 10 2018

16x4y2-25a2b2

16 tháng 10 2019

1) \(x^6+1\)

\(=x^6+x^4-x^4+x^2-x^2+1\)

\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)

\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

2) \(x^6-y^6\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

16 tháng 7 2015

\(3.24^{10}=3^{11}.4^{15}\)
\(4^{30}=4^{15}.4^{15}\)
Dễ thấy 415 > 311 
=> 230+320+420 < 3.2410

21 tháng 9 2017

Ta có :

\(3.24^{20}=3^{11}.4^{15}\)
\(\Rightarrow\)\(4^{30}=4^{15}.4^{15}\)

\(\Rightarrow\)\(4^{15}>3^{11}\) ( vì phân nguyên bé và mũ cũng bé )

\(\Rightarrow\)....................................

6 tháng 7 2016

\(S=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(\left(3^2-1\right)S=4\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(8S=4\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(2S=\left(3^8-1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

...

\(2S=3^{128}-1\)

Vậy S < 3128 - 1

22 tháng 10 2018

\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x^2+3\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)