
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(3.24^{10}=3^{11}.4^{15}\)
\(4^{30}=4^{15}.4^{15}\)
Dễ thấy 415 > 311
=> 230+320+420 < 3.2410

Ta có :
\(3.24^{20}=3^{11}.4^{15}\)
\(\Rightarrow\)\(4^{30}=4^{15}.4^{15}\)
\(\Rightarrow\)\(4^{15}>3^{11}\) ( vì phân nguyên bé và mũ cũng bé )
\(\Rightarrow\)....................................

\(S=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)
\(\left(3^2-1\right)S=4\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)
\(8S=4\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)
\(2S=\left(3^8-1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)
...
\(2S=3^{128}-1\)
Vậy S < 3128 - 1
\(\dfrac{9^3}{\left(3^4-3^3\right)^2}=\dfrac{\left(3^2\right)^3}{3^8-3^6}=\dfrac{3^6}{3^6\cdot\left(3^2-1\right)}=\dfrac{1}{8}\\ 5^2\cdot10^2=\left(5\cdot10\right)^2=50^2=2500\)
Vì: \(\dfrac{1}{8}< 2500\rightarrow\) \(\dfrac{9^3}{\left(3^4-3^3\right)^2}< 5^2\cdot10^2\)
\(\dfrac{9^3}{\left(3^4-3^3\right)^2}=\dfrac{3^6}{\left[3^3\left(3-1\right)\right]^2}=\dfrac{3^6}{3^6\cdot2^2}=\dfrac{1}{2^2}=\dfrac{1}{4}< 5^2\cdot10^2\)