K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2024

\(1,x^3+12x^2+48x+64\\ =x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\\ 2,x^3-6x^2+12x-8\\=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\\ =\left(x-2\right)^3\\ 3,\left(x+2\right)\left(x^2-2x+4\right)\\ =\left(x+2\right)\left(x^2-x\cdot2+2^2\right)\\ =x^3+8\\ 4,\left(x-3\right)\left(x^2+3x+9\right)\\ =\left(x-3\right)\left(x^2+x\cdot3+3^2\right)=x^3-27\\ 5,x^3+27\\ =\left(x+3\right)\left(x^2-3x+9\right)\)

1: \(x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)

\(=\left(x+4\right)^3\)

2: \(x^3-6x^2+12x-8=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3=\left(x-2\right)^3\)

3: \(\left(x+2\right)\left(x^2-2x+4\right)=x^3+2^3=x^3+8\)

4: \(\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)

\(=x^3-3^3=x^3-27\)

5: \(x^3+27=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

a) Ta có: \(x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)

\(=\left(x+4\right)^3\)

b) Ta có: \(x^3-12x^2+48x-64\)

\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)

\(=\left(x-4\right)^3\)

c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)

\(=\left(2x+y\right)^3\)

d)Sửa đề: \(x^3-3x^2+3x-1\)

Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

e) Ta có: \(8-12x+6x^2-x^3\)

\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)

\(=\left(2-x\right)^3\)

f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)

\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)

\(=\left(\frac{1}{3}-3y\right)^3\)

12 tháng 9 2020

thanks bạn

x2 - 6x + 9 

= (x -3)2 (hàng đẳng thức đáng nhớ số 2)

x2 + x + 1/4 

= x2 + 2.x.1/2 + 1/4

= (x +1/2)2 (hàng đẳng thức 1)

12 tháng 9 2018

x2-6x+9=(x+3)2

x2+x+\(\frac{1}{4}\)=\(\left(x+\frac{1}{2}\right)^2\)

Học tốt!

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

13 tháng 9 2017

2.

a) . -x3 + 3x2 - 3x + 1

=13-3.12x+3.1.x2-x3

=(1-x)3

b)8- 12x + 6x2 - x3

=23-3.22.x+3.2.x2-x3

=(2-x)3

13 tháng 9 2017

3.

a) x3 + 12x2 + 48x + 64 tại x = 6

=x3+3.x2.4+3x4+432

=(x+4)3thay x=6 ta được :

(6+4)3=103=1000

b) x3 - 6x2 + 12x - 8 tại x= 22

=x3-3.x2.2+3.x.22 -23

=(x-2)3 thay x=22 ta đc:

=(22-2)3=203=8000

\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)

\(TH2:x+6=0\Leftrightarrow x=-6\)

\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha ) 

\(\left(2x+5\right)^2=\left(3x-1\right)^2\)

\(2x+5=3x-1\)

\(2x-3x=-1-5\)

\(-1x=-6\)

\(x=6\)

14 tháng 8 2015

a/ \(=3y^2-6y-2x+1\)

b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

c/ \(=\left(2-x\right)^3\)

d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)

\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)

\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)

e/ \(=xy-x^2+2x-y^2+xy-2y\)

\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)

14 tháng 8 2015

a) =(2x+3y-1)2

b)=-(x-1)3

c)=-(x3-6x2+12x-8)=-(x-2)3

d)x3 + 2x2y + xy2 – 9x

    = x(x2 + 2xy + y2 -9)

    = x[(x2 + 2xy + y2) - 32]

    = x[(x + y)2 - 32]

    = x (x + y – 3)(x + y + 3)

e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)

18 tháng 7 2017

\(A=x^3+12x^2+48x+64=\left(x+4\right)^3\)

\(B=x^3-6x^2+12x-8=\left(x-2\right)^3\)

\(D=\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-\left(z\right)^2\)

\(E=\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)

18 tháng 7 2017

\(C=\left(2x+y^2\right)^3=\left(2x\right)^2+3\left(2x\right)^2y^2+3.2x\left(y^2\right)^3+\left(y^2\right)^3\)

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)