Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ∆ ABC đều
➡️Góc A = góc B = góc C = 60°
Vì MN // AB (gt)
➡️Góc ABC = góc NMC = 60°
Xét ∆ MNC có 2 góc bằng 60°
➡️∆ MNC đều
C/m tương tự ta sẽ có ∆ BMP đều
b, ✳️ Ta có: MN // AB
MP // AC
➡️AN = MP (t/c cặp đoạn chắn)
mà MP = BP (∆ BMP đều)
➡️AN = BP
T/c cặp đoạn chắn: hai đoạn thẳng song song bị chắn bởi hai đoạn thẳng song song thì bằng nhau.
✳️ Vì ∆ ABC đều
➡️O là trọng tâm đồng thời là tâm đg tròn ngoại tiếp
➡️OA = OB
O cx đồng thời là tâm đg tròn nội tiếp
➡️AO là tia phân giác của góc BAC
➡️Góc BAO = góc OAN (1)
✳️ Xét ∆ ABO có OA = OB (cmt)
➡️∆ ABO cân tại O
➡️Góc ABO = góc BAO (2)
Từ (1) và (2) ➡️góc ABO = góc OAN
✳️ Xét ∆ AON và ∆ BOP có:
AN = BP (cmt)
Góc OAN = góc ABO (cmt)
OA = OB (cmt)
➡️∆ AON = ∆ BOP (c.g.c)
c, Vì ∆ AON = ∆ BOP (cmt)
➡️ON = OP (2 cạnh t/ư)
➡️OI là đg trung trực của PN (đpcm)
Mk trình bày đầy đủ rồi đó bn chỉ cần viết vào vở thôi mk nha hok tốt~
hình như đề sai ấy bạn