Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Gọi đọ dài 2 cạnh góc vuông là a và b => Độ dài cạnh huyền là \(\sqrt{a^2+b^2}\)
Gọi đường cao là h.
=> Chu vi tam giác là: \(a+b+\sqrt{a^2+b^2}\)
Diện tích tam giác là: \(\frac{1}{2}.\sqrt{a^2+b^2}.h\)
Theo bài ra ta có: \(a+b+\sqrt{a^2+b^2}=\frac{1}{2}.\sqrt{a^2+b^2}.h\)
=> \(h=\frac{2a+2b+2\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}=2+2.\frac{a+b}{\sqrt{a^2+b^2}}\)
Theo BĐT Bunhiacopxki có: \(\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
<=> \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
=> \(h\le2+2.\frac{\sqrt{2\left(a^2+b^2\right)}}{\sqrt{a^2+b^2}}=2+2\sqrt{2}\)
=> Giá trị lớn nhất của chiều cao thỏa mãn đk là: \(h_{max}=2+2\sqrt{2}\)
Bài 1:
3 4 x y z
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Gọi \(c\) là cạnh huyền của tam giác vuông đó và \(a,b\) là 2 cạnh góc vuông. Khi đó: \(a+b+c=k\) và \(c^2=a^2+b^2\)
\(\Rightarrow c^2=\left(a+b\right)^2-2ab\ge\left(a+b\right)^2-2.\dfrac{\left(a+b\right)^2}{4}=\dfrac{\left(a+b\right)^2}{2}=\dfrac{\left(k-c\right)^2}{2}\)
\(\Leftrightarrow2c^2\ge k^2-2kc+c^2\)
\(\Leftrightarrow c^2+2kc-k^2\ge0\)
\(\Leftrightarrow\left(\dfrac{c}{k}\right)^2+2.\dfrac{c}{k}-1\ge0\)
\(\Leftrightarrow\dfrac{c}{k}\ge\sqrt{2}-1\) \(\Leftrightarrow c\ge\left(\sqrt{2}-1\right)k\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}c=\left(\sqrt{2}-1\right)k\\a=b=\dfrac{k-c}{2}=\dfrac{\left(2-\sqrt{2}\right)k}{2}\end{matrix}\right.\), thỏa mãn.
Vậy độ dài nhỏ nhất của cạnh huyền là \(\left(\sqrt{2}-1\right)k\)