Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)

<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo

=>2/x(x+2)+2/(x+2)(x+4)+...+2/(x+6)(x+8)=8/105
=>1/x-1/x+2+1/x+2-1/x+4+...+1/x+6-1/x+8=8/105
=>\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
=>x(x+8)=105
=>x^2+8x-105=0
=>(x+15)(x-7)=0
=>x=7 hoặc x=-15

1/ (2x+3)(x-4)+(x+5)(x-2)=(3x-5)(x-4)
<=> 2x2 - 8x + 3x - 12 + x2 - 2x + 5x - 10 - 3x2 + 12x + 5x - 20 = 0
<=> 15x - 20 = 0
<=> 15x = 20
<=> x = 4/3

`Answer:`
1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)
\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)
\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)
\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)
\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)
\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)
\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(v=x^2+=8x+11\)
Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)
\(=v^2-4^2+15\)
\(=v^2-1\)
\(=\left(v+1\right)\left(v-1\right)\)
\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)
\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)
\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)
\(=x^4-2ax^2+a^2-6x^2+2a+4x\)
6) \(a^2-b^2-c^2+2bc-2a+1\)
\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)
\(=\left(a-1\right)^2-\left(b-c\right)^2\)
\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)
7) \(4a^2-4b^2+16bc-16c^2\)
\(=4a^2-\left(4b^2-16bc+16c^2\right)\)
\(=\left(2a\right)^2-\left(2b-4c\right)^2\)
\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)
\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)
\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)
\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+8}\right)=\dfrac{1}{2}\cdot\dfrac{8}{x\left(x+8\right)}=\dfrac{4}{x\left(x+8\right)}\)
\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}\\ =\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x-4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\\ =\dfrac{1}{x}-\dfrac{1}{x+8}\\ =\dfrac{x+8}{x^2+8x}-\dfrac{x}{x^2+8x}\\ =\dfrac{8}{x\left(x+8\right)}\)