Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
a) Đặt:
\(A=1+2^2+2^3+2^4+...+2^{2018}\)
\(\Leftrightarrow2A=2+2^3+2^4+2^5+...+2^{2019}\)
\(\Leftrightarrow2A-A=\left(2+2^{2019}\right)-\left(1+2^2\right)\)
\(\Leftrightarrow A=2+2^{2019}-1-2^2\)
\(\Leftrightarrow A=2+2^{2019}-5\)
\(\Leftrightarrow A=2^{2019}-3\)
Vậy \(A=2^{2019}-3\).
b) Đặt:
\(B=1+5+5^2+5^3+...+5^{2017}\)
\(\Leftrightarrow5B=5+5^2+5^3+5^4+...+5^{2018}\)
\(\Leftrightarrow5B-B=5^{2018}-1\)
\(\Leftrightarrow4B=5^{2018}-1\)
\(\Leftrightarrow B=\dfrac{5^{2018}-1}{4}\)
Vậy \(B=\dfrac{5^{2018}-1}{4}\).
Chúc bạn học tốt!
a)A= 1 + 22+23 + 24 +....+22018
2A = 22 + 23 + 24 +......+22018 + 22019
_
A= 1 + 22+23 + 24 +....+22018
A= 22019 - 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(A=1+3+3^2+...+3^{2018}\)
\(\Rightarrow3A=3.\left(1+3+3^2+...+3^{2018}\right)\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2019}\)
\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2019}-\left(1+3+3^2+...+3^{2018}\right)\)
\(\Rightarrow2A=3^{2019}-1\)
\(\Rightarrow A=\frac{3^{2019}-1}{2}\)
b) \(B=5+5^2+...+5^{2017}\)
\(\Rightarrow5B=5^2+5^3+...+5^{2018}\)
\(\Rightarrow5B-B=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(\Rightarrow4B=5^{2018}-5\)
\(\Rightarrow B=\frac{5^{2018}-5}{4}\)
a,A=1+3+32+...+32017
3A=3+32+33+...+32018
3A-A=32018-1
2A=32018-1
A=(32018-1):2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
A = 1 + 3 + 32 + 33 + ... + 36
3A = 3 + 32 + 33 + ... + 37
3A - A = (3 + 32 + 33 + ... + 37) - 1 + 3 + 32 + 33 + ... + 36
2A = 37 - 1
Ta lại có:
B = (37 - 1) : 2
2B = 37 - 1
Vì 2A = 2b nên A = B.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2018^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2017\cdot2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}< \frac{3}{4}\)
\(3A=3+3^2+3^3+...+3^{11}\)
\(2A=3A-A=3^{11}-1\Rightarrow A=\dfrac{3^{11}-1}{2}\)
\(4B=4^2+4^3+...+4^{2019}\)
\(3B=4B-B=4^{2019}-4\Rightarrow B=\dfrac{4^{2019}-4}{3}\)
a) Ta có A= 1 + 3 + 32 +...+ 310
Suy ra 3A= 3 + 32+...+311
Lấy 3A-A= (3 + 32+...+311)- (1 + 3 + 32 +...+ 310)
Suy ra 2A= 311-1
⇒ A=\(\dfrac{3^{11}-1}{2}\)