Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|
A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5
Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| \(\ge\) 42
Vậy MinB = 42 khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|
\(\ge\) |x+5+7-x| + |x+2+8-x|
\(\ge\) |12| + |10|
\(\ge\) 12 + 10 \(\ge\) 22
Vậy MinC = 22 khi và chỉ khi :
-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7
d) D = |x+3|+|x−2|+|x−5|
Giải
D = |x+3|+|x−2|+|x−5|
\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|
A = |-x-5|+|x+17| ≥ |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 ≤ x ≤ -5
Vậy MinA=12 khi - 17 ≤ x ≤ -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| ≥ (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| ≥≥42
Vậy MinB = 42 khi và chỉ khi:
x+8 ≥ 0 ⇒x ≥ −8
x+13 = 0 => x = −13 .Vậy x=-13
x+50 ≥ 0 => x ≥ −50
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
=> |x+5| + |x+2| + |7-x| + |8-x|
≥ |x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22
Vậy MinC = 22 khi và chỉ khi :
-5 ≤ x ≤ 8 và -2 ≤ x ≤ 7 ⇔ -2 ≤ x ≤ 7
a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
\(=\left|x-1\right|+\left|2-x\right|+2016\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)
Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)
b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)
Ta lại có: \(\left|x-2\right|\ge0\) (2)
Từ (1)(2) suy ra: \(B\ge2\)
Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)
a) Ta có:
\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)
hay \(A\ge\left|1\right|+2016=1+2016=2017\)
=> \(A\ge2017\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.
b) Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)
hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)
\(\Rightarrow B\ge\left|x\right|\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)
Để B nhỏ nhất
=> |x| phải nhỏ nhất (2)
Từ (1) và (2)
=> x=1
khi đó:
B=|x|=|1|=1
Vậy với x=1 thì B đạt GTNN và B=1.
\(K=|x-1|+|x-2|+|x-3|\)
\(=\left(|x-1|+|x-3|\right)+|x-2|\)
\(=\left(|x-1|+|3-x|\right)+|x-2|\)
Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)
Hay \(A\ge2\left(1\right)\)
Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)
\(\Leftrightarrow1\le x\le3\)
Đặt \(B=|x-2|\)
Ta có: \(|x-2|\ge0;\forall x\)
Hay \(B\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)
Hay \(K\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)
Vậy MIN K=2 \(\Leftrightarrow x=2\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Ta có lx-1l + lx-2l + lx-3l = lx-1l + lx-3l + lx-2l = lx-1l + l3-xl + lx-2l > hoặc = lx-1+3-xl +lx-2l = 2 + lx-2l
Vì lx-2l > hoặc = 0 nên 2 + lx-2l > hoặc = 2
Dấu = xảy ra khi
(x-1)(3-x) > hoặc = 0
và x-2=0
Suy ra x-1> hoặc = 0 , 3-x> hoặc = 0
hoặc x-1< hoặc = 0 , 3-x< hoặc 0
và x=2
SUy ra x > hoặc = 1, x < hoặc = 3 (Nhận)
hoặc x< hoặc = 1 , x> hoặc = 3 (Loại )
và x=2
SUy ra x=2
Vậy giá trị nhỏ nhất của lx-1l + lx-2l + lx-3l là 2 tại x=2
bạn nên thay chữ hoặc và chữ và bằng kí hiệu nha . Mik ko gỡ kí hiệu được
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):
\(\left|x-1\right|+\left|x-100\right|\ge\left|\left(x-1\right)+\left(100-x\right)\right|=99\)
(Dấu "=" khi \(1\le x\le100\))
\(\left|x-2\right|+\left|x-99\right|\ge\left|\left(x-2\right)+\left(99-x\right)\right|=97\)
(Dấu "=" khi \(2\le x\le99\))
\(\left|x-3\right|+\left|x-98\right|\ge\left|\left(x-3\right)+\left(98-x\right)\right|=95\)
(Dấu "=" khi \(3\le x\le98\))
...
\(\left|x-49\right|+\left|x-50\right|\ge\left|\left(x-49\right)+\left(50-x\right)\right|=1\)
(Dấu "="\(\Leftrightarrow49\le x\le50\))
Vậy \(B\ge99+97+95+...+1=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)
\(=2500\)
Dấu "=" khi \(49\le x\le50\)
Ta có: |x2 + x + 13| = |(x + 1/2)2 + 51/4| ≥ 51/4 ∀x
|x2 + x - 9| = |(x+1/2)2 - 37/4| ≥ 37/4 ∀x
⇒ A ≥ 51/4 + 37/4 = 22 ∀x
Dấu "=" xảy ra khi x = -1/2