Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(m\overrightarrow{a}=m\left(-1;-2\right)=\left(-m;-2m\right)\)
\(n\overrightarrow{b}=n\left(1;-3\right)=\left(n;-3n\right)\)
\(\Rightarrow m\overrightarrow{a}+n\overrightarrow{b}=\left(-m+n;-2m-3n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-m+n=2\\-2m-3n=-4\end{matrix}\right.\) \(\Rightarrow m-n=-2\) (đảo dấu pt đầu là ra, ko cần giải hẳn ra m; n)

Gọi \(M\left(a;b\right)\)
\(\Rightarrow\overrightarrow{MB}=\left(2-a;3-b\right)\Rightarrow2\overrightarrow{MB}=\left(4-2a;6-2b\right)\)
\(\overrightarrow{MC}=\left(-1-a;-2-b\right)\Rightarrow3\overrightarrow{MC}=\left(-3-3a;-6-3b\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(1-5a;-5b\right)=\overrightarrow{0}\)
\(\Rightarrow\left\{{}\begin{matrix}1-5a=0\\-5b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{5}\\b=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{1}{5};0\right)\)

1/ Có G là trọng tâm tam giác ABC
Vì \(C\in Oy;G\in Ox\Rightarrow x_C=0;y_G=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}\\y_G=\frac{y_A+y_B+y_C}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_G=\frac{1+5+0}{3}\\0=\frac{-1-3+y_C}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_G=2\\y_C=4\end{matrix}\right.\Rightarrow C\left(0;4\right);G\left(2;0\right)\)
2/ \(\overrightarrow{AE}=3\overrightarrow{AB}-2\overrightarrow{AC}\)
\(\Rightarrow\left(x_E-x_A;y_E-y_A\right)=3\left(x_B-x_A;y_B-y_A\right)-2\left(x_C-x_A;y_C-y_A\right)\)
\(\Leftrightarrow\left(x_E-2;y_E-5\right)=3\left(-1;-4\right)-2\left(1;-2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_E-2=-3-2\\y_E-5=-12+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_E=-3\\y_E=-3\end{matrix}\right.\Rightarrow E\left(-3;-3\right)\)
3/ \(\overrightarrow{OA}=\overrightarrow{BC}\Rightarrow\left(x_A-x_O;y_A-y_O\right)=\left(x_C-x_B;y_C-y_B\right)\)
\(\Leftrightarrow\left(-2;1\right)=\left(x_C-4;y_C-5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C-4=-2\\y_C-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=2\\y_C=6\end{matrix}\right.\Rightarrow C\left(2;6\right)\)
P/s: Kt lại số lịu hộ tui nhoa, nhỡ may soai thì tiu :)

(mk lm câu a theo cái đề bn đã xứa nha )
a) giả sử : \(I\) có tọa độ \(\left(x_I;y_I\right)\)
ta có : \(I\) là trung điểm của \(AB\) \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2-4}{2}=-1\\y_I=\dfrac{4+2}{2}=3\end{matrix}\right.\)
vậy điểm \(I\) có tọa độ là \(I\left(-1;3\right)\)
theo đề bài ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\) (1)
mà \(I\) là trung điểm \(AB\) \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) (2)
từ (1) và (2) ta có : \(\overrightarrow{MA}=\overrightarrow{IA}\) \(\Leftrightarrow\) \(M\equiv I\)
vậy \(M\equiv I\) thì ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\)
b) (lm theo đề đã sữa)
giả sử : điểm \(N\) có tọa độ là \(\left(x_N;y_N\right)\)
vì gốc \(O\) là trọng tâm của tam giác \(ABN\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+x_B+x_N}{3}=0\\\dfrac{y_A+y_B+y_N}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A+x_B+x_N=0\\y_A+y_B+y_N=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-4+x_N=0\\4+2+y_N=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_N=2\\y_N=-6\end{matrix}\right.\)
vậy điểm \(N\) có tọa độ là \(N\left(2;-6\right)\) thì gốc \(O\) là trọng tâm của tam giác \(ABN\)

Bài 1
\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-1\right)+\left(-3\right).\left(-4\right)=10\)
Bài 2
Đường thẳng y = ax + b đi qua hai điểm A(1;2) và B (0;3) , ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
Vậy Pt có dạng \(y=-x+3\)
Bài 3
Ta có (P) và (D) giao điểm thì P=D
\(x^2-4x+1=x-5\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=3\Rightarrow y=-2\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Vậy (P) và (D) giao điểm tại A(3;-2) và B(2;-3)
Bài 4
\(\overrightarrow{AB};\overrightarrow{FD}\)
Bài 5
ta có \(\overrightarrow{u}=\left(2;-3\right)\)\(\Rightarrow\)\(3\overrightarrow{u}=\left(2.3;\left(-3\right).3\right)=\left(6;-9\right)\)
Bài 6
\(C\in Ox\Rightarrow C\left(x;0\right)\)
\(\overrightarrow{\left|AB\right|}=\sqrt{2^2+2^2}=2\sqrt{2}\)
\(\overrightarrow{\left|AC\right|}=\sqrt{x^2+2x+5}\)
Để tam giác ABC cân tại A thì AB=AC
\(\sqrt{X^2+2X+5}=2\sqrt{2}\Rightarrow X^2+2X+1=0\Leftrightarrow X=-1\)
Vậy để tam giác ABC cân tại A thì C(-1;0)
3 vector gọi là đồng phẳng nếu chúng cùng nằm trên một mặt phẳng. Điều kiện cần và đủ để 3 vector \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\) đồng phẳng là \(\left[\overrightarrow{u},\overrightarrow{v}\right].\overrightarrow{w}=0\) (tích hỗn tạp của chúng bằng 0)
Ta có \(\left[\overrightarrow{a},\overrightarrow{b}\right]=\left(\left|\begin{matrix}m&2\\2&1\end{matrix}\right|;\left|\begin{matrix}2&1\\1&m+1\end{matrix}\right|;\left|\begin{matrix}1&m\\m+1&2\end{matrix}\right|\right)\)
\(=\left(m-4;2m+1;-m^2-m+2\right)\)
\(\Rightarrow\left[\overrightarrow{a},\overrightarrow{b}\right].\overrightarrow{c}=0\left(m-4\right)+\left(m-2\right)\left(2m+1\right)+2\left(-m^2-m+2\right)\)
\(=2m^2+m-4m-2-2m^2-2m+4\)
\(=2-5m\)
Để \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) đồng phẳng thì \(\left[\overrightarrow{a},\overrightarrow{b}\right].\overrightarrow{c}=0\Leftrightarrow2-5m=0\Leftrightarrow m=\dfrac{2}{5}\)
Vậy \(m=\dfrac{2}{5}\)