K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2024

1; 8\(x^2\) - 4 = 0

   8\(x^2\)  = 4

     \(x^2\) = 4 : 8

      \(x^2\) = \(\dfrac{1}{2}\)

     \(\left[{}\begin{matrix}x=\dfrac{-\sqrt{2}}{2}\\x=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

Vậy \(x\) \(\in\) {- \(\dfrac{\sqrt{2}}{2}\)\(\dfrac{\sqrt{2}}{2}\)}

  

10 tháng 7 2024

2; 2\(x^2\) - 16 = 0

   2\(x^2\)        = 16

  \(x^2\)          = 16 : 2

  \(x^2\)        = 8

\(\left[{}\begin{matrix}x=-2\sqrt{2}\\x=2\sqrt{2}\end{matrix}\right.\)

Vậy \(x\in\) {-2\(\sqrt{2}\); 2\(\sqrt{2}\)}

3 tháng 5 2020

mk ra cho các bn làm nên mk lm mẫu 1 bài y hệt ntn cho các bn tham khảo trc nhé xD

\(4x^2-7x+3=0\)

Ta có : \(\Delta=b^2-4ac=\left(-7\right)^2-4.4.3=49-48=1\)

Do \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+1}{8}=1\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-1}{8}=\frac{6}{8}=\frac{3}{4}\)

Vậy ...

\(2x^2+6x-4=0\)

Ta có : \(\Delta=b^2-4ac=6^2-4.2.4=36-32=4\)

Do \(A>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+4}{4}=-\frac{1}{2}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-4}{4}=-\frac{5}{2}\)

số ko đẹp lắm :P đúng ko cj 

16 tháng 9 2016

Ta có : \(x^4+2x^3+8x^2+10x+15=0\)

\(\Leftrightarrow\left(x^4+2x^3+3x^2\right)+\left(5x^2+10x+15\right)=0\)

\(\Leftrightarrow x^2\left(x^2+2x+3\right)+5\left(x^2+2x+5\right)=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2x+3=0\\x^2+5=0\end{array}\right.\)

Ta có : \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\) 

=> PT này vô nghiệm.

\(x^2+5>0\) => PT này vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

28 tháng 2 2018

a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy...

b,\(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)

\(\Leftrightarrow\left(x+2\right)\left(5-3x\right)-\left(x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-4x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy...

28 tháng 8 2016

a-b=5 và (a,b)/[a,b]. Tim a:b

13 tháng 7 2016

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

13 tháng 7 2016

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)

NV
14 tháng 5 2020

c/

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)

Đặt \(x^2-x=t\)

\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ ĐKXĐ: ...

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(2\left(t^2-2\right)-3t+2=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)

b/ Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)

\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)

\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)

3 tháng 8 2018

a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

\(\sqrt{x^2-1}-x^2+1=0\)

\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)

\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)

\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)

Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)

b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-4}-x+2=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)

kl: x=2

c) \(\sqrt{x^4-8x^2+16}=2-x\)

\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)

\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)

Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)

(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)

Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)

Kl: x=-3, x=-1,x=2

d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)

Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)

Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)

Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)

e) Đk: \(x\ge-\dfrac{3}{2}\)

\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)

\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)

kl: \(x=-\dfrac{5}{8}\)

f) Đk: x >/ 5

\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\left(N\right)\)

kl: x=9

16 tháng 1 2019

Dài dữ