K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2024

dài quá ko có ai trả lời hộ đâu

 

a: ΔOCK vuông tại C

=>\(CK^2+CO^2=OK^2\)

=>\(CK=\sqrt{10^2-8^2}=6\left(cm\right)\)

Xét ΔCOK vuông tại C có CA là đường cao

nên \(\left\{{}\begin{matrix}OA\cdot OK=OC^2\\CA\cdot OK=CO\cdot CK\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}OA=\dfrac{8^2}{10}=6,4\left(cm\right)\\CA=\dfrac{8\cdot6}{10}=4,8\left(cm\right)\end{matrix}\right.\)

Xét ΔCOK vuông tại C có \(sinCOK=\dfrac{CK}{OK}=\dfrac{6}{10}=\dfrac{3}{5}\)

nên \(\widehat{COK}=\widehat{xOy}\simeq36^052'\)

b: Xét ΔCAO vuông tại A có AH là đường cao

nên \(CH\cdot CO=CA^2\left(1\right)\)

Xét ΔCOK vuông tại C có CA là đường cao

nên \(AO\cdot AK=AC^2\left(2\right)\)

Từ (1),(2) suy ra \(CH\cdot CO=AO\cdot AK\)

15 tháng 3 2018

a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau

b, Do OI=NK, OK=IM => OM=ON

Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông

c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông

=> ∆BLC = ∆KOI

=>  L B C ^ = O K I ^ = B I K ^

mà  B I K ^ + I B A ^ = 90 0

L B C ^ + L B I ^ + I B A ^ = 180 0

d, Có OMCN là hình vuông cạnh a cố định

=> C cố định và AB luôn đi qua điểm C