K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2024

Để giải bài toán này, ta bắt đầu bằng cách giải thích lại phương trình ban đầu và sau đó tính giá trị của biểu thức \( M \).

Phương trình ban đầu là:
\[ (a+b+c)^2 = a+b+c \]

Điều này chỉ xảy ra khi \( a+b+c = 1 \) (vì nếu \( a+b+c = 0 \), thì phương trình sẽ không thỏa mãn vì \( 0^2 \neq 0 \)).

Tiếp theo, giải thích biểu thức \( M \):
\[ M = \frac{bc}{a^2} + \frac{ca}{b^2} + \frac{ab}{c^2} \]

Với điều kiện \( abc \neq 0 \), ta có thể tính toán giá trị của \( M \) khi \( a+b+c = 1 \).

Giả sử \( a = b = c = \frac{1}{3} \):
- Tính \( M \):
\[ M = \frac{\frac{1}{3} \cdot \frac{1}{3}}{\left(\frac{1}{3}\right)^2} + \frac{\frac{1}{3} \cdot \frac{1}{3}}{\left(\frac{1}{3}\right)^2} + \frac{\frac{1}{3} \cdot \frac{1}{3}}{\left(\frac{1}{3}\right)^2} \]
\[ M = \frac{\frac{1}{9}}{\frac{1}{9}} + \frac{\frac{1}{9}}{\frac{1}{9}} + \frac{\frac{1}{9}}{\frac{1}{9}} \]
\[ M = 1 + 1 + 1 \]
\[ M = 3 \]

Vậy, khi \( a = b = c = \frac{1}{3} \), thì \( M = 3 \).

Do đó, kết quả của biểu thức \( M \) khi \( a+b+c = 1 \) và \( abc \neq 0 \) là \( \boxed{3} \).

30 tháng 10 2018

Ta cần chứng minh

\(a+b+c\ge ab+bc+ca\)

do \(x^2+y^2+z^2\ge xy+yz+zx\)

đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)

9 tháng 11 2018

Ma Đức Minh cho hỏi cái dòng đầu tiên :)

NV
15 tháng 2 2020

Không mất tỉnh tổng quát, giả sử \(0\le a\le b\le c\Rightarrow\left\{{}\begin{matrix}b+c\le3\\a\left(a-b\right)\le0\\a\left(a-c\right)\le0\end{matrix}\right.\)

\(P=\left[a\left(a-b\right)+b^2\right]\left[a\left(a-c\right)+c^2\right]\left[\left(b+c\right)^2-3bc\right]\)

\(\Rightarrow P\le b^2c^2\left(9-3bc\right)=12.\frac{bc}{2}.\frac{bc}{2}\left(3-bc\right)\le\frac{4}{9}\left(\frac{bc}{2}+\frac{bc}{2}+3-bc\right)^3=12\)

\(\Rightarrow P_{max}=12\) khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và hoán vị

17 tháng 2 2020

Giả sử \(a\ge b\ge c\ge0\)

Ta sẽ chứng minh:\(P\le\frac{4}{243}\left(a+b+c\right)^6\)

Thật vậy:

\(P-\frac{4}{243}\left(a+b+c\right)^6\)

\(=\)-1/243 c (24 a^5 + 363 a^4 b - 183 a^4 c + 240 a^3 b^2 + 240 a^3 b c + 323 a^3 c^2 + 240 a^2 b^3 + 117 a^2 b^2 c + 240 a^2 b c^2 - 183 a^2 c^3 + 363 a b^4 + 240 a b^3 c + 240 a b^2 c^2 + 363 a b c^3 + 24 a c^4 + 24 b^5 - 183 b^4 c + 323 b^3 c^2 - 183 b^2 c^3 + 24 b c^4 + 4 c^5)

\(-\frac{1}{243}\left(a-2b\right)^2\left(2a-b\right)^2\left(a^2+11ab+b^2\right)\le0\) (cái này nhóm lại là thấy ngay:D)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và hoán vị.

a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0

\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

M  tương tự

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

30 tháng 10 2020

\(\hept{\begin{cases}a+b+c=2\\a^2+b^2+c^2=18\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\\a^2+b^2+c^2=18\end{cases}}\Rightarrow ab+bc+ca=-7\)

Ta có: \(a+b+c=2\Leftrightarrow c-1=1-a-b\Rightarrow ab+c-1=ab-a-b+1=\left(a-1\right)\left(b-1\right)\Rightarrow\frac{1}{ab+c-1}=\frac{1}{\left(a-1\right)\left(b-1\right)}\)Tương tự, ta được: \(\frac{1}{bc+a-1}=\frac{1}{\left(b-1\right)\left(c-1\right)}\)\(\frac{1}{ca+b-1}=\frac{1}{\left(c-1\right)\left(a-1\right)}\)

Do đó \(A=\frac{1}{\left(a-1\right)\left(b-1\right)}+\frac{1}{\left(b-1\right)\left(c-1\right)}+\frac{1}{\left(c-1\right)\left(a-1\right)}=\frac{a+b+c-3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=\frac{-1}{abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1}=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)

19 tháng 7 2016

bài nè cấp 2 chưa làm đc đâu bạn ạ

27 tháng 2 2018

xem trên mạng

27 tháng 2 2018

mình quỳ bạn luôn Nhân Thiên Hoàng ạ kiệt lên mạng hỏi mà mày lại bảo vậy thì thua luôn

27 tháng 2 2018

m=10 Câu hỏi của Đạt Trần Tiến - Toán lớp 9 | Học trực tuyến