K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading... 

6
24 tháng 6 2024

a) Gọi K' là giao điểm của BI và EF, S là giao điểm của EJ và AB.

 Ta có \(\left(FSBA\right)=-1\) (hàng điều hòa quen thuộc). Mặt khác, dễ thấy K'B là trung trực của FJ nên K'B cũng là tia phân giác của \(\widehat{FK'S}\)

 Do đó, \(\widehat{AK'B}=90^o\). Khi đó tam giác AK'B vuông tại K' có trung tuyến K'M nên \(K'M=MB=\dfrac{1}{2}AB\)

 Từ đó suy ra tam giác MK'B cân tại M \(\Rightarrow\widehat{MK'B}=\widehat{MBK'}=\widehat{K'BC}\)

 Do đó MK'//BC. Chú ý rằng MN là đường trung bình của tam giác ABC \(\Rightarrow\) MN//BC. Vậy \(K'\in MN\) hay K' chính là giao điểm của MN và JE. Điều này có nghĩa là \(K'\equiv K\)

 Như vậy, \(K,B,I\) thẳng hàng và \(\widehat{AKB}=90^o\) hay \(AK\perp BI\)

 Lại có \(FJ\perp BI\) nên AK//FJ hay AK//HJ.

 Tương tự, ta cũng có AH//KJ nên tứ giác AKJH là hình bình hành.

 \(\Rightarrow\) HK, AJ cắt nhau tại trung điểm mỗi đoạn, hay JA đi qua trung điểm của HK.

 

24 tháng 6 2024

 câu a ý 2:

 Gọi U là giao điểm của EF và BC, P là trung điểm BC, X là điểm chính giữa cung BC không chứa D của (O).

 Có \(\widehat{XIB}=\widehat{IAB}+\widehat{IBA}=\widehat{XCB}+\widehat{IBC}=\widehat{XBC}+\widehat{IBC}=\widehat{XBI}\) nên tam giác XBI cân tại X \(\Rightarrow XB=XI\)

 Tương tự, ta cũng có \(XB=XC=XI\) nên X là tâm (IBC)

 Dễ thấy \(\widehat{XBD}=\widehat{XCD}=90^o\) nên XB, XC là tiếp tuyến tại B và C của (X).

 \(\Rightarrow DC^2=DP.DX=DT.DG\) \(\Rightarrow\) Tứ giác TPXG nội tiếp.

 \(\Rightarrow\widehat{DPT}=\widehat{XGT}=\widehat{XTG}=\widehat{XPG}\)

 \(\Rightarrow90^o-\widehat{DPT}=90^o-\widehat{XPG}\)

 \(\Rightarrow\widehat{UPT}=\widehat{UPG}\) . Do \(\widehat{UPG}+\widehat{GPC}=180^o\)

 \(\Rightarrow\) \(\widehat{GPC}+\widehat{UPT}=180^o\)

  Vì D là giao điểm của 2 tiếp tuyến tại B và C của đường tròn (X) nên GD là đối trung của tam giác GBC 

 \(\Rightarrow\widehat{BGT}=\widehat{PGC}\)

  Lại có \(\widehat{GTB}=\widehat{GCP}\) \(\Rightarrow\Delta GTB\sim\Delta GCP\) \(\Rightarrow\widehat{GBT}=\widehat{GPC}\)

  Lại có \(\widehat{GBT}=\widehat{GIT}\) nên \(\widehat{GPC}=\widehat{GIT}\)

  Kết hợp với \(\widehat{GPC}+\widehat{UPT}=180^o\), ta có \(\widehat{GIT}+\widehat{UPT}=180^o\) 

 \(\Rightarrow\) Tứ giác ITPJ nội tiếp.

 Mặt khác, \(\left(BCJU\right)=-1\) và P là trung điểm BC nên \(\overline{UJ}.\overline{UP}=\overline{UB}.\overline{UC}\) (hệ thức Maclaurin)

 \(\Rightarrow P_{U/\left(ITPJ\right)}=P_{U/\left(X\right)}\)

 \(\Rightarrow\) U nằm trên trục đẳng phương của đường tròn (ITPJ) và (X), mà IT là trục đẳng phương của 2 đường tròn này nên U, I, T thẳng hàng.

 Xét cực và đối cực đối với (I). Kí hiệu \(d_Y\) là đối cực của Y đối với (I).

 Ta có \(\left(BCJU\right)=-1\) \(\Rightarrow J\in d_U\) 

 Lại có \(U\in EF\equiv d_A\Rightarrow A\in d_U\) 

 Do đó \(JA\equiv d_U\) \(\Rightarrow JA\perp UI\) hay \(JA\perp IT\) (đpcm)

loading...

1
NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

CT
11 tháng 1 2023

Em muốn hỏi gì vậy?

22 tháng 11 2016

Đặt MA=x \(\Rightarrow\)MB= 24-x với \(x\in\left[0;24\right]\)

Đặt f(x)=MC+MD=\(\sqrt{MA^2+AC^2}+\sqrt{MB^2+BD^2}=\sqrt{x^2+10^2}+\sqrt{\left(24-x^2\right)+30^2}\)

Ta xét hàm f(x) trên đoạn [0;24]

\(f'\left(x\right)=\frac{x}{\sqrt{x^2+10^2}}-\frac{24-x}{\sqrt{\left(24-x\right)^2+30^2}}\\ =\frac{MA}{MC}-\frac{MB}{MD}\)

\(f'\left(x\right)=0\Leftrightarrow\frac{MA}{MC}-\frac{MB}{MD}=0\Leftrightarrow\frac{MA}{MC}=\frac{MB}{MD}\)

từ đó suy ra hai tam giác vuông \(\Delta MAC\)\(\Delta MBD\) đồng dạng

\(\Rightarrow\frac{MA}{MC}=\frac{MB}{MD}=\frac{AC}{BD}=\frac{1}{3}\)

Vậy \(MA=\frac{24}{3+1}=6\)(m) và MB=24-6=18(m)

21 tháng 11 2016

????????? Em chỉ mới học lớp 6 thôi!

22 tháng 11 2016

gọi a,b,c(cm) lần lượt là số đo 3 chiều của hình hộp

Ta có: \(S_1=a.b\\ S_2=b.c\\ S_3=a.c\)

\(\Rightarrow V=a.b.c=\sqrt{S_1.S_2.S_3}=\sqrt{20.28.35}=140\left(cm^3\right)\)

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 17:

\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)

\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)

Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)

\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)

\(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)

\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 11)

Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)

\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)

\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)

\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)

Đáp án C

Câu 20)

Ta có:

\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)

\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)

\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)

Đáp án A.

19 tháng 1 2022

con hươu A nha,tick cho 1 cái đi,ko đúng ko tick cũng được nha

20 tháng 6 2023
Con hươu cao cổ B thấp hơn vì:  A)Con hươu cao cổ B có 9 phần cổ. B)Con hươu cao cổ A có 12 phần cổ.

 

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

8 tháng 3 2017

47. y=x ĐA: D

48. A(-4;0); B(0;4); C(x; 3)

\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)

A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D

49.A(2;-2); B(3;1); C(0;2)

\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)

=>Tam giác vuông cân=> ĐA:C

51. ĐA:D

52: A(-1;3); B(-3;-2); C(4;1)

\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)

ĐA: C

8 tháng 3 2017

điền bừa đi

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B