loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2024

a) Gọi K' là giao điểm của BI và EF, S là giao điểm của EJ và AB.

 Ta có \(\left(FSBA\right)=-1\) (hàng điều hòa quen thuộc). Mặt khác, dễ thấy K'B là trung trực của FJ nên K'B cũng là tia phân giác của \(\widehat{FK'S}\)

 Do đó, \(\widehat{AK'B}=90^o\). Khi đó tam giác AK'B vuông tại K' có trung tuyến K'M nên \(K'M=MB=\dfrac{1}{2}AB\)

 Từ đó suy ra tam giác MK'B cân tại M \(\Rightarrow\widehat{MK'B}=\widehat{MBK'}=\widehat{K'BC}\)

 Do đó MK'//BC. Chú ý rằng MN là đường trung bình của tam giác ABC \(\Rightarrow\) MN//BC. Vậy \(K'\in MN\) hay K' chính là giao điểm của MN và JE. Điều này có nghĩa là \(K'\equiv K\)

 Như vậy, \(K,B,I\) thẳng hàng và \(\widehat{AKB}=90^o\) hay \(AK\perp BI\)

 Lại có \(FJ\perp BI\) nên AK//FJ hay AK//HJ.

 Tương tự, ta cũng có AH//KJ nên tứ giác AKJH là hình bình hành.

 \(\Rightarrow\) HK, AJ cắt nhau tại trung điểm mỗi đoạn, hay JA đi qua trung điểm của HK.

 

24 tháng 6 2024

 câu a ý 2:

 Gọi U là giao điểm của EF và BC, P là trung điểm BC, X là điểm chính giữa cung BC không chứa D của (O).

 Có \(\widehat{XIB}=\widehat{IAB}+\widehat{IBA}=\widehat{XCB}+\widehat{IBC}=\widehat{XBC}+\widehat{IBC}=\widehat{XBI}\) nên tam giác XBI cân tại X \(\Rightarrow XB=XI\)

 Tương tự, ta cũng có \(XB=XC=XI\) nên X là tâm (IBC)

 Dễ thấy \(\widehat{XBD}=\widehat{XCD}=90^o\) nên XB, XC là tiếp tuyến tại B và C của (X).

 \(\Rightarrow DC^2=DP.DX=DT.DG\) \(\Rightarrow\) Tứ giác TPXG nội tiếp.

 \(\Rightarrow\widehat{DPT}=\widehat{XGT}=\widehat{XTG}=\widehat{XPG}\)

 \(\Rightarrow90^o-\widehat{DPT}=90^o-\widehat{XPG}\)

 \(\Rightarrow\widehat{UPT}=\widehat{UPG}\) . Do \(\widehat{UPG}+\widehat{GPC}=180^o\)

 \(\Rightarrow\) \(\widehat{GPC}+\widehat{UPT}=180^o\)

  Vì D là giao điểm của 2 tiếp tuyến tại B và C của đường tròn (X) nên GD là đối trung của tam giác GBC 

 \(\Rightarrow\widehat{BGT}=\widehat{PGC}\)

  Lại có \(\widehat{GTB}=\widehat{GCP}\) \(\Rightarrow\Delta GTB\sim\Delta GCP\) \(\Rightarrow\widehat{GBT}=\widehat{GPC}\)

  Lại có \(\widehat{GBT}=\widehat{GIT}\) nên \(\widehat{GPC}=\widehat{GIT}\)

  Kết hợp với \(\widehat{GPC}+\widehat{UPT}=180^o\), ta có \(\widehat{GIT}+\widehat{UPT}=180^o\) 

 \(\Rightarrow\) Tứ giác ITPJ nội tiếp.

 Mặt khác, \(\left(BCJU\right)=-1\) và P là trung điểm BC nên \(\overline{UJ}.\overline{UP}=\overline{UB}.\overline{UC}\) (hệ thức Maclaurin)

 \(\Rightarrow P_{U/\left(ITPJ\right)}=P_{U/\left(X\right)}\)

 \(\Rightarrow\) U nằm trên trục đẳng phương của đường tròn (ITPJ) và (X), mà IT là trục đẳng phương của 2 đường tròn này nên U, I, T thẳng hàng.

 Xét cực và đối cực đối với (I). Kí hiệu \(d_Y\) là đối cực của Y đối với (I).

 Ta có \(\left(BCJU\right)=-1\) \(\Rightarrow J\in d_U\) 

 Lại có \(U\in EF\equiv d_A\Rightarrow A\in d_U\) 

 Do đó \(JA\equiv d_U\) \(\Rightarrow JA\perp UI\) hay \(JA\perp IT\) (đpcm)

NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

CT
11 tháng 1 2023

Em muốn hỏi gì vậy?

1 giờ trước (15:44)

Mình nhìn rõ biểu thức trong ảnh là:


$$

V = \sqrt[3]{\,(x^2 - 4)^2\,}.

$$


---


### Phân tích:


* Đây là căn bậc 3 của $(x^2 - 4)^2$.

* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).


---


### Biến đổi đơn giản hơn:


$$

V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.

$$


---


✅ Kết luận:


* Tập xác định: $D = \mathbb{R}$.

* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.





c: \(y=-x^2+2x+3\)

=>\(y^{\prime}=-2x+2\)

Đặt y'<0

=>-2x+2<0

=>-2x<-2

=>x>1

=>Hàm số nghịch biến trên (1;+∞)

Đặt y'>0

=>-2x+2>0

=>-2x>-2

=>x<1

=>Hàm số đồng biến trên (-∞;1)

d: \(y=\frac13x^3+3x^2+5x+2\)

=>\(y^{\prime}=\frac13\cdot3x^2+3\cdot2x+5=x^2+6x+5=\left(x+1\right)\left(x+5\right)\)

Đặt y'>0

=>(x+1)(x+5)>0

=>\(\left[\begin{array}{l}x>-1\\ x<-5\end{array}\right.\)

=>Hàm số đồng biến trên các khoảng (-1;+∞) và (-∞;-5)

Đặt y'<0

=>(x+1)(x+5)<0

=>-5<x<-1

=>Hàm số nghịch biến trên khoảng (-5;-1)

22 tháng 11 2016

Đặt MA=x \(\Rightarrow\)MB= 24-x với \(x\in\left[0;24\right]\)

Đặt f(x)=MC+MD=\(\sqrt{MA^2+AC^2}+\sqrt{MB^2+BD^2}=\sqrt{x^2+10^2}+\sqrt{\left(24-x^2\right)+30^2}\)

Ta xét hàm f(x) trên đoạn [0;24]

\(f'\left(x\right)=\frac{x}{\sqrt{x^2+10^2}}-\frac{24-x}{\sqrt{\left(24-x\right)^2+30^2}}\\ =\frac{MA}{MC}-\frac{MB}{MD}\)

\(f'\left(x\right)=0\Leftrightarrow\frac{MA}{MC}-\frac{MB}{MD}=0\Leftrightarrow\frac{MA}{MC}=\frac{MB}{MD}\)

từ đó suy ra hai tam giác vuông \(\Delta MAC\)\(\Delta MBD\) đồng dạng

\(\Rightarrow\frac{MA}{MC}=\frac{MB}{MD}=\frac{AC}{BD}=\frac{1}{3}\)

Vậy \(MA=\frac{24}{3+1}=6\)(m) và MB=24-6=18(m)