Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}:\frac{1}{3}\times\frac{1}{4}=\frac{5}{6}\)
\(\frac{3}{x}\times\frac{1}{4}=\frac{5}{6}\)
\(\frac{3}{x}=\frac{5}{6}:\frac{1}{4}\)
\(\frac{3}{x}=\frac{10}{3}\)
\(\Leftrightarrow3.3=10.x\)
\(\Leftrightarrow9=10.x\)
\(\Leftrightarrow x=\frac{9}{10}\)
\(\frac{1}{x}:\frac{1}{3}\times\frac{1}{4}=\frac{5}{6}\)
\(\frac{1}{x}:\frac{1}{3}=\frac{10}{3}\)
\(\frac{3}{x}=\frac{10}{3}\)
\(x=3.\frac{3}{10}=\frac{9}{10}\)
Giúp em bài toán này với :
Bài 3: Tìm x :
b) X x \(\frac{1}{2}\)+ \(\frac{3}{2}\)x X = \(\frac{4}{5}\)
\(x.\frac{1}{2}+\frac{3}{2}.x=\frac{4}{5}\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{3}{2}\right)=\frac{4}{5}\)
\(\Rightarrow x.1=\frac{4}{5}\)
\(\Rightarrow x=\frac{4}{5}\)
\(\dfrac{13+x}{20}\) = \(\dfrac{3}{4}\)
13 + \(x\) = 20 \(\times\) \(\dfrac{3}{4}\)
13 + \(x\) = 15
\(x\) = 15 - 13
\(x\) = 2
Cách khác :
\(\dfrac{13+x}{20}=\dfrac{3}{4}\)
\(\dfrac{13+x}{20}=\dfrac{15}{20}\)
\(13+x=15\)
\(x=15-13\)
\(x=2\)
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
b) so sánh qua phân số trung gian \(\frac{h}{h+2}\)
ta có \(\frac{h+1}{h+2}>\frac{h}{h+2}^{\left(1\right)}\)
ta lại có \(\frac{h}{h+2}>\frac{h}{h+3}^{\left(2\right)}\)
từ (1) và (2)
\(\Rightarrow\frac{h+1}{h+2}>\frac{h}{h+3}\)
a) so sánh qua phân số trung gian \(\frac{200}{408}\)
ta có \(\frac{203}{408}>\frac{200}{408}^{\left(1\right)}\)
ta lại có \(\frac{200}{408}>\frac{200}{449}^{\left(2\right)}\)
từ (1) và (2)
\(\Rightarrow\frac{203}{408}>\frac{200}{449}\)
3/4 * x + 1/2 * x -15 = 35
3/4 * x +1/2 * x = 35 + 15
3/4 * x +1/2 * x = 50
x * ( 3/4 + 1/2 ) = 50
x * 5/4 = 50
x = 50 : 5/4
x = 40
phan b mik ko nhap dc nen bn tu lm nha
a, \(\frac{3}{4}\times x+\frac{1}{2}\times x-15=35\)
\(x+x-15=\frac{3}{4}-\frac{1}{2}\)
\(x+x-15=\frac{2}{8}=\frac{1}{4}\)
\(x=35-15\)
\(x=20\)
Vậy \(x=\frac{1}{4}\)và \(x=20\)
b, Chịu
\(\dfrac{3}{4}+\dfrac{1}{4}:x=2\)
=>\(\dfrac{1}{4}:x=2-\dfrac{3}{4}=\dfrac{5}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{5}{4}=\dfrac{1}{5}\)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=2\)
\(=>\dfrac{1}{4}:x=2-\dfrac{3}{4}=\dfrac{8}{4}-\dfrac{3}{4}\)
\(=>\dfrac{1}{4}:x=\dfrac{5}{4}\)
\(=>x=\dfrac{1}{4}:\dfrac{5}{4}=\dfrac{1}{4}\times\dfrac{4}{5}\)
\(=>x=\dfrac{1}{5}\)
Vậy...
`#Hoshiii`