Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải chi tiết:
a) Chứng minh tứ giác AEHF và BCEF nội tiếp.
Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH
⇒⇒ A, E, H, F cùng thuộc một đường tròn
⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).
Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF là tứ giác nội tiếp (dhnb)
b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.
Xét ΔIBDΔIBD và ΔIDCΔIDC có:
∠I∠I chung
∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))
⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).
c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.
Xét ΔIBEΔIBE và ΔIFCΔIFC có:
∠I∠I chung
∠IEB=∠ICF∠IEB=∠ICF (BCEF là tứ giác nội tiếp)
⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)
⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID
Xét ΔIDFΔIDF và ΔIEDΔIED có:
∠I∠I chung
IDIE=IFID(cmt)IDIE=IFID(cmt)
⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)
Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)
Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá
HD
Câu 1.
Tự CM.
Câu 2:
Kẻ AO cắt đường tròn tại F
Để ý góc ADE=góc EBC=góc AFC
Mà góc CAF+góc FAC =90°
⇒góc ADE+góc FAC =90°hay AF ⊥ DE.
Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.
Câu 3:
Gọi giao CQ và BP là O’
Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)
⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’
⇒ các ΔBQN, ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C
⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi
![](https://rs.olm.vn/images/avt/0.png?1311)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
Tham khảo:
a. Để chứng minh tứ giác \(ADHE\) nội tiếp, ta cần chứng minh rằng góc \(DHE\) bằng \(180^\circ\) - tức là góc \(DHE\) là góc ngoài của tam giác \(ABC\) tại đỉnh \(A\), vì khi đó tứ giác \(ADHE\) sẽ nội tiếp.
Xét góc \(DHE\), ta thấy rằng:
\[ \angle DHE = \angle B + \angle C \]
Do \(BD\) và \(CE\) là đường cao của tam giác \(ABC\), nên:
\[ \angle B = \angle EHB \]
\[ \angle C = \angle HDC \]
Vậy:
\[ \angle DHE = \angle EHB + \angle HDC \]
\[ \angle DHE = (180^\circ - \angle B) + (180^\circ - \angle C) \]
\[ \angle DHE = 360^\circ - (\angle B + \angle C) \]
Nhưng ta biết rằng tổng các góc của tam giác \(ABC\) là \(180^\circ\), nên:
\[ \angle DHE = 360^\circ - 180^\circ = 180^\circ \]
Điều này chứng minh tứ giác \(ADHE\) là tứ giác nội tiếp.
b. Để chứng minh \( \angle DEK = \angle DMC \), ta sử dụng tính chất của tứ giác \(ADHE\) nội tiếp đã chứng minh ở câu (a).
Do tứ giác \(ADHE\) là tứ giác nội tiếp, nên:
\[ \angle DHE = 180^\circ - \angle DAE \]
Nhưng ta cũng biết rằng:
\[ \angle DAE = \angle DMC \]
Vậy:
\[ \angle DHE = 180^\circ - \angle DMC \]
\[ \angle DHE + \angle DMC = 180^\circ \]
Giả sử \(HN\) vuông góc với \(AB\) tại \(N\), với \(M\) là trung điểm của \(BC\), thì \(HM\) cũng là đường trung bình của tam giác \(ABC\), nên:
\[ \angle HMC = \angle HNC = 90^\circ \]
Vậy, chúng ta có:
\[ \angle DHE + \angle DMC = 180^\circ = \angle HMC + \angle HNC \]
Vậy, điều phải chứng minh là góc \(DEK\) bằng góc \(DMC\).
a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp
b: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔBAC
=>AH\(\perp\)BC tại K
Xét tứ giác BEHK có \(\widehat{BEH}+\widehat{BKH}=90^0+90^0=180^0\)
nên BEHK là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
Ta có: \(\widehat{DEH}=\widehat{DAH}\)(AEHD nội tiếp)
\(\widehat{KEH}=\widehat{KBH}\)(BEHK nội tiếp)
mà \(\widehat{DAH}=\widehat{KBH}\left(=90^0-\widehat{DCB}\right)\)
nên \(\widehat{DEH}=\widehat{KEH}\)
=>EC là phân giác của góc DEK
=>\(\widehat{DEK}=2\cdot\widehat{HED}\)
mà \(\widehat{HED}=\widehat{HBC}\)(BEDC nội tiếp)
nên \(\widehat{DEK}=\widehat{HBC}\)(1)
ΔDBC vuông tại D
mà DM là đường trung tuyến
nên DM=MB=MC
Xét ΔMDB có \(\widehat{DMC}\) là góc ngoài tại D
nên \(\widehat{DMC}=\widehat{MBD}+\widehat{MDB}=2\cdot\widehat{MBD}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{DEK}=\widehat{DMC}\)