Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
Ta có : \(x^2+2\ge2\forall x\Rightarrow\left(x^2+2\right)^2\ge4\forall x\)
\(\left|y-1\right|\ge0\forall y\)
Nên K = \(\left(x^2+2\right)^2+\left|y-1\right|+2014\ge4+0+2014=2018\)
Vậy Kmin = 2018 khi x2 + 2 = 2
<=> x2 = 0
<=> x = 0
|y - 1| = 0
<=> y - 1 = 0
<=> y = 1
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
Nhớ nhấn nhé
Số số hạng của tổng A là 30-0+1=31 số
A=1 + 3 + 32 + 33 +...+ 330=(1+3+32+33)+…+(324+325+326+327)+328+329+330
Đồng dư..0+..0+..0+…+…0+328+329+330=328+329+330(mod 10)
Ta có 32=-1 mod(10) suy ra 328+329+330 đồng dư 1+3+9=13 mod 10
Vậy A tận cùng là 3=> A không là số chính phương
Làm lại :
Ta có: A= 1+3+32+33+...+330
=>3A=3+32+33+34+...+331
=> 3A-A=(3+32+33+34+...+331) - (1+3+32+33+...+330)
=>2A=331-1
\(\Rightarrow A=\frac{3^{31}-1}{2}=\frac{\left(3^4\right)^7.3^3-1}{2}=\frac{\left(...1\right)^7.27-1}{2}\)
\(A=\frac{\left(...1\right).7-1}{2}=\frac{\left(...6\right)}{2}=...3\)
Vì số chính phương không có tận cùng là 3 nên A không phải là số chính phương
a; Ta có A = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1 + 8 + 27 + 64 + 125 = 225 = 15^2
Vì 225 là số chính phương => A là số chính phương
b; B = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 = 1 + 3 + 9 + 27 + 81 = 121 = 11 ^2
VÌ 121 là số chính phương => B là số chính phương
bài 1
chứng minh chia hết cho 3 nè
s=\(2+2^2+2^3+...+2^{100}\)
s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
s=\(2.3+2^2.3+...+2^{99}.3\)
s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)
chứng minh chia hết cho 5
s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
s=\(2.15+...+2^{97}.15\)
s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5
mong là có thể giúp được bạn
1: \(D=3^0+3^1+...+3^{302}\)
=>\(3D=3+3^2+...+3^{303}\)
=>\(3D-D=3+3^2+...+3^{303}-3^0-3^1-...-3^{202}\)
=>\(2D=3^{303}-1\)
=>\(2D+1=3^{303}\)
=>\(27n=3^{303}\)
=>\(n=3^{300}\)
1)\(D=3^0+3^1+...+3^{302}\)
\(\Rightarrow3D=3\left(1+3+3^2+...+3^{302}\right)\)
\(\Rightarrow3D=3+3^2+3^3+...+3^{302}+3^{303}\)
\(\Rightarrow3D-D=\left(3+3^2+3^3+...+3^{303}\right)-\left(3^0+3^1+...+3^{302}\right)\)
\(\Rightarrow2D=3^{303}-3^0\)
\(\Rightarrow2D=3^{303}-1\)
\(\Rightarrow2D-1=3^{303}\)
\(Do3^{303}=\left(3^3\right)^{101}=27^{101}\)
\(\Rightarrow2D+1=27^{101}=27^n\)
\(\Rightarrow n=101\)