K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: loading...

b: Phương trình hoành độ giao điểm là:

2x-4=x+4

=>2x-x=4+4

=>x=8

Thay x=8 vào y=x+4, ta được:

y=8+4=12

Vậy: Q(8;12)

Tọa độ N là:

\(\left\{{}\begin{matrix}x=0\\y=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: N(0;-4)

Tọa độ M là:

\(\left\{{}\begin{matrix}x=0\\y=0+4=4\end{matrix}\right.\)

Vậy: M(0;4)

M(0;4); N(0;-4); Q(8;12)

\(MN=\sqrt{\left(0-0\right)^2+\left(-4-4\right)^2}=8\)

\(MQ=\sqrt{\left(8-0\right)^2+\left(12-4\right)^2}=\sqrt{8^2+8^2}=8\sqrt{2}\)

\(NQ=\sqrt{\left(8-0\right)^2+\left(12+4\right)^2}=\sqrt{8^2+16^2}=8\sqrt{5}\)

Xét ΔMNQ có \(cosMNQ=\dfrac{NM^2+NQ^2-MQ^2}{2\cdot NM\cdot NQ}=\dfrac{256}{2\cdot8\cdot8\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

=>\(sinMNQ=\sqrt{1-\left(\dfrac{2}{\sqrt{5}}\right)^2}=\dfrac{1}{\sqrt{5}}\)

Diện tích ΔMNQ là:

\(S_{MNQ}=\dfrac{1}{2}\cdot NM\cdot NQ\cdot sinMNQ\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{5}}\cdot8\cdot8\sqrt{5}=\dfrac{64}{2}=32\)

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

8 tháng 7 2018

giúc mk với 

12 tháng 9 2023

a)

- Với \(x =  - 2 \Rightarrow f\left( { - 2} \right) =  - 2;g\left( { - 2} \right) =  - 2 + 3 = 1\);

- Với \(x =  - 1 \Rightarrow f\left( { - 1} \right) =  - 1;g\left( { - 1} \right) =  - 1 + 3 = 2\);

- Với \(x = 0 \Rightarrow f\left( 0 \right) = 0;g\left( 0 \right) = 0 + 3 = 3\);

- Với \(x = 1 \Rightarrow f\left( 1 \right) = 1;g\left( 1 \right) = 1 + 3 = 4\);

- Với \(x = 2 \Rightarrow f\left( 2 \right) = 2;g\left( 2 \right) = 2 + 3 = 5\); 

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y = f\left( x \right) = x\)

–2

–1

0

1

2

\(y = g\left( x \right) = x + 3\)

1

2

3

4

5

b)

- Vẽ đồ thị hàm số \(y = f\left( x \right) = x\)

Cho \(x = 1 \Rightarrow y = f\left( x \right) = 1\). Ta vẽ điểm \(A\left( {1;1} \right)\)

Đồ thị hàm số \(y = x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(A\left( {1;1} \right)\).

- Các điểm có tọa độ thỏa mãn hàm số \(y = g\left( x \right)\) trong bảng trên là \(B\left( { - 2;1} \right);C\left( { - 1;2} \right);D\left( {0;3} \right);E\left( {1;4} \right);F\left( {2;5} \right)\).

c) Ta đặt thước thẳng kiểm tra thì thấy các điểm thuộc đồ thị hàm số \(y = g\left( x \right) = x = 3\) thẳng hàng với nhau.

Dự đoán cách vẽ đồ thị hàm số \(y = g\left( x \right)\):

Bước 1: Chọn hai điểm \(A;B\) phân biệt thuộc đồ thị hàm số \(y = g\left( x \right)\).

Bước 2: Vẽ đường thẳng đi qua hai điểm \(A;B\).

Đồ thị hàm số \(y = g\left( x \right)\) là đường thẳng đi qua hai điểm \(A;B\).

16 tháng 12 2023

a: Tạo độ A là:

\(\left\{{}\begin{matrix}y=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)

Vậy: O(0;0); A(2;0); B(0;2)

\(OA=\sqrt{\left(2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2}=2\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{2^2}=2\)

b: \(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=2\sqrt{2}\)

Chu vi tam giác OAB là:

\(C_{OAB}=OA+OB+AB=4+2\sqrt{2}\)

Ta có: Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)

12 tháng 9 2023

- Vẽ đồ thị hàm số \(y = x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} =  - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

- Vẽ đồ thị hàm số \(y =  - x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y =  - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).

Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).

Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).

Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).

6 tháng 8 2016

Ta có mp P và Q cùng đi qua A, hai mp có giao điểm thì cắt nhau.

Với d và d' thuộc Q cùng với việc d song song mp P(mp chứa d') suy ra d song song d'.

Nếu d song song mp P mà d và d' ko cùng thuộc một mp thì đây là hai đừờng thẳng chéo nhau

11 tháng 10 2021

b: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+2\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{4}\cdot4^2=4\\y=\dfrac{1}{4}\cdot\left(-2\right)^2=1\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a) Vẽ đường thẳng y = 2x -1 trên mặt phẳng tọa độ

Với x = 0 thì y = -1, ta được điểm A(0; -1) thuộc đồ thị hàm số y = 2x – 1

Với x = 1 thì y = 1, ta được điểm B(1; 1) thuộc đường thẳng y = 2x – 1

Đồ thị hàm số y = 2x – 1 là một đường thẳng đi qua hai điểm A(0; -1) và điểm B(1; 1)

b) Vì đường thẳng y = ax + b \(\left( {a \ne 0} \right)\) song song với đường thẳng y = 2x -1 nên a = 2

Đường thẳng dã cho là: y = 2x + b

Vì đường thẳng y = 2x + b đi qua điểm M(1; 3) nên:

3 = 2.1 + b suy ra b = 1

Vậy đường thẳng cần tìm là; y = 2x + 1

* Vẽ đường thẳng y = 2x + 1

Với x = 0 thì y = 1, ta được điểm P(0, 1) thuộc đồ thị hàm số y = 2x + 1

Với x = 1 thì y = 1, ta được điểm Q(1; 3) thuộc đồ thị hàm số y = 2x + 1

Đồ thị hàm số y = 2x + 1 là đường thẳng đi qua hai điểm P(0; 1) và Q(1; 3)

20 tháng 12 2018

\(a^3+b^3=2.\left(c^3-8d^3\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^2-15d^3⋮3\)

\(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\Rightarrow a+b+c+d⋮3\)

tự c/n \(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\)nha, gợi ý 1 cái rồi còn lại tương tự

\(a^3-a=a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)chia hết cho 3( vì a,b,c,d thuộc Z)

ợ mk ngu toán lắm, bn lm ơn giải rõ ràng ra hộ nhaaa