\(P=\sqrt{x+2}+\sqrt{4-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2024

đk: \(-2\le x\le4\)

Ta có \(P^2=\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\) 

\(\le2\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\) (dùng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))

\(=2\left(x+2+4-x\right)\)

\(=12\)

\(\Rightarrow P\le2\sqrt{3}\) (vì \(P>0\))

Dấu "=" xảy ra \(\Leftrightarrow x+2=4-x\Leftrightarrow x=1\)

Vậy GTLN của P là \(2\sqrt{3}\) khi \(x=1\)

21 tháng 2 2024

Ta có: \(P=\sqrt{x+2}+\sqrt{4-x}\left(-2\le x\le4\right)\)

\(\Leftrightarrow P^2=\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\)

\(\Leftrightarrow P^2=x+2+4-x+2\sqrt{\left(x+2\right)\left(4-x\right)}\)

\(\Leftrightarrow P^2=6+2\sqrt{\left(x+2\right)\left(4-x\right)}\) 

Mà: \(6+2\sqrt{\left(x+2\right)\left(4-x\right)}\le6+x+2+4-x=12\) 

\(\Leftrightarrow P^2\le12\)

\(\Leftrightarrow P\le2\sqrt{3}\)

Dấu  "=" xảy ra khi: \(x+2=4-x\Leftrightarrow2x=2\Leftrightarrow x=1\)

Vậy: \(P_{max}=2\sqrt{3}\Leftrightarrow x=1\)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

16 tháng 10 2016

Toán này lớp 8 đúng không ta

\(\sqrt{-x^2+2x+2}=\sqrt{3-\left(x^2-2x+1\right)}\)

\(\sqrt{3-\left(x-1\right)^2}\le\sqrt{3}\)

Đạt được khi x = 1

Câu còn lại làm tương tự

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

2 tháng 7 2021

Áp dụng bất đẳng thức Bu-nhia-cốp-xki ta được:

\(\left(x-2+4-x\right)\left(1+9\right)\ge\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\).

\(\Leftrightarrow20\ge P^2\Leftrightarrow-\sqrt{20}\le P\le\sqrt{20}.\)

Dấu bằng bạn tự tìm dấu bằng xảy ra của BĐT Bunhiacopxki nha, trên mạng có nhiều.

11 tháng 10 2021

cóoooo

18 tháng 5 2022

câu a

x phải dương và x khác 4

câu b

x = 9 P = 4

x = 4 P không xác định vì mẫu số= 0

Câu c

 P ≤ 0 thì | P| >  P 

hết giờ rôi bạn hiền

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

20 tháng 7 2016

a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

b)\(S=A\cdot B\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)

\(=1+\frac{1}{\sqrt{x}+2}\)

Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\)  đạt GTLN 

\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN 

GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)

Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)

20 tháng 7 2016

ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)

\(\Leftrightarrow x\ge0\) và \(x\ne1\)

20 tháng 7 2016

a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)   \(\left(ĐK:x\ge0;x\ne1\right)\)

   \(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

      \(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

     \(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

24 tháng 7 2019

\(\sqrt{6-x}+\sqrt{x+2}=\sqrt{\left(1.\sqrt{6-x}+1.\sqrt{x+2}\right)^2}\) \(\le\left(1^2+1^2\right)\left(6-x+x+2\right)=2.8=16\)

24 tháng 7 2019

bạn tìm điều kiện xác định r dùng bunhiacopxki là ra nhé