![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp Dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{12}=\frac{24}{12}=2\)
=> \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
=> \(\frac{y+2}{4}=2\Rightarrow y=6\)
=> \(\frac{z+3}{5}=2\Rightarrow z=7\)
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+3y+4z}{4+12+24}=\frac{9}{40}\)
=>\(\frac{x+1}{2}=\frac{9}{40}\Rightarrow x=-0,55\)
=> \(\frac{y+3}{4}=\frac{9}{40}\Rightarrow y=-2,1\)
=>\(\frac{z+5}{6}=\frac{9}{40}\Rightarrow z=-3,65\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5
Áp dụng ... = > x - 1 + y - 2 + z - 3 / 3 + 4 + 5 = x + y + z - 1 - 2 - 3 / 3 + 4 + 5 = 12/12 = 1
Do x - 1/3 = 1 = > x - 1 = 3 => x = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
\(x+\dfrac{1}{3}=y+\dfrac{2}{4}=z+\dfrac{3}{5}\)
Cách \(1\):
\(\Rightarrow\dfrac{x+\dfrac{1}{3}}{1}=\dfrac{y+\dfrac{2}{4}}{1}=\dfrac{z+\dfrac{3}{5}}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+\dfrac{1}{3}}{1}=\dfrac{y+\dfrac{2}{4}}{1}=\dfrac{z+\dfrac{3}{5}}{1}=\dfrac{x+\dfrac{1}{3}+y+\dfrac{2}{4}+z+\dfrac{3}{5}}{3}=\dfrac{x+y+z+\dfrac{43}{30}}{3}=\dfrac{18+\dfrac{43}{30}}{3}=\dfrac{583}{90}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{583}{90}\Rightarrow x=\dfrac{553}{90}\)
\(\Rightarrow y+\dfrac{2}{4}=\dfrac{583}{90}\Rightarrow y=\dfrac{269}{45}\)
\(\Rightarrow z+\dfrac{3}{5}=\dfrac{583}{90}\Rightarrow z=\dfrac{529}{90}\)
\(\Rightarrow\) Vậy \(\left(x;y;z\right)\) lần lượt thỏa mãn đề bài là \(\left(\dfrac{553}{90};\dfrac{269}{45};\dfrac{529}{90}\right)\)
Cách \(2\):
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x+\dfrac{1}{3}=y+\dfrac{2}{4}=z+\dfrac{3}{5}=\dfrac{x+1+y+2+z+3}{3+4+5}=\dfrac{\left(x+y+z\right)+\left(1+2+3\right)}{12}=\dfrac{18+6}{12}=\dfrac{24}{12}=2\)
\(\Rightarrow\dfrac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\Rightarrow\dfrac{y+2}{4}=2\Rightarrow y+2=8\Rightarrow y=6\)
\(\Rightarrow\dfrac{z+3}{5}=2\Rightarrow z+3=10\Rightarrow z=7\)
Vậy \(\left(x;y;z\right)\) lần lượt thỏa mãn yêu cầu đề bài là \(\left(5;6;7\right)\)