Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E=12+22+32+42+...+982+992+1002
=1+2(1+1)+3(1+2)+4(1+3)+....+98(1+97)+99(1+98)+100(1+99)
=1+1.2+2+3+2.3+4+3.4+....+98+97.98+99+98.99+100+99.100
=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)
Đặt A=1+2+3+...+100=\(\frac{\left(100+1\right).100}{2}=5050\)
Đặt B=1.2+2.3+3.4+...+99.100
3B=1.2.3+2.3.3+....+99.100.3
3B=1.2.3+2.3.(4-1)+...+99.100.(101-98)
3B=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100
3B=99.100.101
=>B=\(\frac{99.100.101}{3}=333300\)
Vậy E=A+B=5050+333300=338350
A=2^ 100 -2^ 99+2 ^98 -2 ^97+.....+2 ^2 -2
=>2A=2^ 101 -2 ^100+2^ 99 -2 ^98+.....+2^ 3 -2^ 2
=>2A+A=2 ^101 -2 ^100+2^ 99 -2^ 98+.....+2^ 3 -2 ^2+2^ 100 -2^ 99+2 ^98 -2^ 97+....+2 ^2 -2
=>3A=2^ 201 -2
=>A=\(\frac{2^{201}-2}{3}\)
B=3^ 100 -3^ 99+3^ 98 -3^ 97+....+3 ^2 -3+1
=>3B=3^ 101 -3 ^100+3 ^99 -3^ 98+...+3 ^3 -3^ 2+3
=>3B+B=3^ 101 -3^100+3^ 99 -3 ^98+...+3 ^3 -3 ^2+3+3 ^100 -3^ 99+3^ 98 -3^ 97+....+3 ^2 -3+1
=>4B=3 ^101+1
=>B=\(\frac{3^{101}+1}{4}\)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow A+2A=2^{101}-2\)
\(A\left(1+2\right)=2^{101}-2\)
\(A.3=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)
\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)
\(\Rightarrow B+3B=3^{101}-3\)
\(B\left(1+3\right)=3^{101}-3\)
\(4B=3^{101}-3\)
\(B=\frac{3^{101}-3}{4}\)
\(a,A=1^2+3^2+5^2+...+99^2\)
\(A=1+2^2+3^2+4^2+5^2+...+99^2\)
\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}\)
\(A=333300-4950=328350\)
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
=1+ 2 (1+1)+ (2+1 )3+...+(99+1)100
=1+2+1.2+2.3+3+...+99.100+100
=(1+2+3+...+100)+(1.2+2.3+...+99.100)
=5050+(1.2+2.3+...+99.100)
đặt A=1.2+2.3+...+99.100
=>3A=1.2.3+2.3.3+...+99.100.3
=1.2.3+2.3(4-1)+...+99.100(101-98)
=1.2.3-1.2.3+2.3.4-2.3.4+...+98.99.100-98.99.100+99.100.101
=999900
=>A=333300
=>M=333300+5050=338350