K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 1 2024

a.

Gọi tọa độ D có dạng \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;3\right)\\\overrightarrow{DC}=\left(4-x;4-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=1\\4-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\) \(\Rightarrow D\left(3;1\right)\)

b.

Gọi I là giao 2 đường chéo

Do giao điểm 2 đường chéo hình bình hành là trung điểm AC nên theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow I\left(\dfrac{5}{2};\dfrac{5}{2}\right)\)

11 tháng 1 2024

????????????????

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có:  \(\overrightarrow {AB}  = \left( {1;3} \right)\), \(\overrightarrow {DC}  = \left( {5 - x;5 - y} \right)\)

Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)

Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)

Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)

b) Gọi M  là giao điểm của hai đường chéo, suy ra M là trung điểm của AC

Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)

Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD  là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {1;3} \right),\overrightarrow {AC}  = \left( {3;3} \right),\overrightarrow {BC}  = \left( {2;0} \right)\)

Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \)

            \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}}  = 2\)

            \(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} =  - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)

\(\overrightarrow{AB}=\left(-3;7\right)\)

\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)

Để ABCD là hbh thì 

\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)

31 tháng 3 2016

A(1;0) B (2;0) C D I(x;x) 4

Từ giả thiết  suy ra khoảng cách giữa 2 đường thẳng song song AB, CD bằng 4.

Từ đó, do A, B thuộc Ox nên C(c;4), D(d;4)

Vì 2 đường chéo AC, BD cắt nhau tại I nằm trên đường thẳng y=x nên ta có hệ :

\(\begin{cases}2x=c+1=d+2\\2x=0+4\end{cases}\)

Từ đó tìm được x=2, c=3, d=2.

Vậy C(3;4), D(2;4)

28 tháng 8 2016

cho mình hỏi hình bình hành có diện tích bằng 4 thì sao suy ra được khoảng cách giữa 2 đường thẳng song song =4

12 tháng 11 2021

\(\overrightarrow{AB}=\left(-1;-4\right)\)

Ta có: ABCD là hình bình hành

nên \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{DC}=\left(-1;-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-3=-1\\y_D-3=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=2\\y_D=-1\end{matrix}\right.\)

7 tháng 11 2019

Đáp án B

ABCD là hình bình hành

=>vecto AB=vecto DC

=>6-x=3-1=2 và 5-y=2-1=1

=>x=4 và y=4

5 tháng 12 2023

 a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.

 b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\) 

 Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)

\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)

\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)

\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)

c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.

\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)

\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)

\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

 d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)

 e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.

Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)

\(\Rightarrow D\left(-2;-3\right)\) 

f) Bạn xem lại đề nhé.