Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AE=FC
AB=CD
=> DF=EB
AD=BC
góc ADF=EBC
=> tam giác ADF = CBE ( c-g-c)
=> AF=EC
Nối A vs C
xét tg ADE và tg CBF có: AED=CFB=90 ; AD=BC(tg ABCD là hbh) ; ADE=CBF(so le trong)
=>tg ADE=tg CBF(ch-gn)=>DE=BF(2 cạnh t/ư) (1)
mặt khác: EI=IF(vì I là t/đ của EF)(2)
từ (1),(2)=> DE+EI=BF+IF=>DI=BI=>I là t/đ vủa BD, mà tg ABCD là hbh nên I là t/đ của AC (*)
xét tg ANCM có: AN//CM,AM//NC(cung vg vs EF)=>tg ANCM là hbh=> AC và mn cắt nhau tại trung điểm của mỗi đg(**)
từ (*),(**)=> I là t/đ của MN => M đối xứng vs N qua I
a: Xét ΔADE vuông tại E và ΔCBF vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔADE=ΔCBF
Suy ra: AE=CF
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: Hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường
hay I là trung điểm của AC
Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)
a) Chứng minh ΔAED=ΔCFB
b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF