
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,A\left(x\right)=2x+3\)
Có \(2x+3=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(-\frac{3}{2}\)là 1 nghiệm của đa thức A(x)
\(b,B\left(x\right)=4x^2-25\)
\(\Rightarrow B\left(x\right)=\left(2x\right)^2-25\)
Có \(B\left(x\right)=0\Rightarrow\left(2x\right)^2-25=0\)
\(\Rightarrow\left(2x\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x=5\\2x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy -5/2 là 1 nghiệm của B(x)
\(c,C\left(x\right)=x^2-7\)
Có \(C\left(x\right)=0\Leftrightarrow x^2-7=0\)
\(\Rightarrow x^2=7\)
\(\Rightarrow x=\orbr{\begin{cases}\sqrt{7}\\-\sqrt{7}\end{cases}}\)
Vậy \(\sqrt{7};-\sqrt{7}\)là 2 nghiệm của C(x)
\(d,D\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(D\left(x\right)=x-2x^2+2x^2-x+4\)
\(D\left(x\right)=4\)
Vậy D(x) vô nghiệm
+) Ta có: A(x) = 2x + 3 = 0
(=) 2x = -3
(=) x = \(\frac{-3}{2}\).
+) Ta có: B(x) = 4x2 -25 = 0
(=) 4x2 = 25
(=) (2x)2 = 52
=> 2x = 5
(=) x = \(\frac{5}{2}\).

\(a,\left(x+1\right)^2=81\)
\(\left(x+1\right)^2=9^2\) Hoặc \(\left(x+1\right)^2=\left(-9\right)^2\)
\(\left(x+1\right)=9\) \(x+1=-9\)
\(x=8\) \(x=-10\)
b,\(\left(x+5\right)^{^{ }3}=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(x+5=-4\)
=> \(x=-9\)
c,\(\left(2x-3\right)^2=9\)
=>\(\left(2x-3\right)^2=3^2\)Hoặc \(\left(2x-3\right)^2=\left(-3\right)^2\)
\(2x-3=3\) \(2x-3=-3\)
\(2x=6\) \(2x=0\)
=> \(\hept{\begin{cases}x=3\\x=0\end{cases}}\)
d, \(\left(4x+1\right)^3=27\)
\(\left(4x+1\right)^{^{ }3}=3^3\)
\(4x+1=3\)
\(4x=2\)
\(x=\frac{1}{2}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{8^6}{4}=\frac{\left(2^3\right)^6}{2^2}=\frac{2^{18}}{2^2}=2^{16}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{15}+4^{10}}{4^6+4^{11}}=\frac{4^{10}.4^5+4^{10}}{4^6+4^6.4^5}=\frac{4^{10}.\left(4^5+1\right)}{4^6.\left(4^5+1\right)}=\frac{4^{10}}{4^6}=4^4=256\)
phần D trên mk làm sai xin lỗi nha

Vì \(\left|3x+2\right|+\left|x+\frac{3}{5}\right|+\left|\frac{1}{2}-x\right|>0\)
=> 4x > 0
=> x > 0
\(\Rightarrow\left(3x+2\right)+\left(x+\frac{3}{5}\right)+\left(\frac{1}{2}-x\right)=4x\)
\(\Rightarrow\left(3x-x+x\right)+\left(2+\frac{3}{5}-\frac{1}{2}\right)=4x\)
\(\Rightarrow3x+\frac{21}{10}=4x\)
=> x = - 21 / 10
Vậy x = - 21 / 10

1) Tìm x, y biết : \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có :
\(\left|x-y\right|\ge0\forall x;y\)
\(\left|y+\frac{9}{25}\right|\ge0\forall y\)
\(\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\Leftrightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\frac{9}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-\frac{9}{25}\end{matrix}\right.\)
Vậy : \(x=y=-\frac{9}{25}\)
2) Tìm x biết :
a) \(\left|x+\frac{2}{11}\right|>\left|-5,5\right|\)
\(\Rightarrow\left|x+\frac{2}{11}\right|>5,5=\frac{11}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{2}{11}>\frac{11}{2}\\x+\frac{2}{11}>-\frac{11}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\frac{11}{2}-\frac{2}{11}=\frac{117}{22}\\x>-\frac{11}{2}-\frac{2}{11}=-\frac{125}{22}\end{matrix}\right.\Rightarrow x>-\frac{125}{22}\)
Vậy : \(x>-\frac{125}{22}\)
Đúng không ta ? Mình không chắc lắm ....

Tôi giải phần a, b thôi nhé.
Giải:
a, \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow}x=\frac{3}{2};x=\frac{1}{3}\)
b, \(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=3-4x\\2+3x=4x-3\end{cases}}\Leftrightarrow x=\frac{1}{7};x=5\)
\(\left(4x^2-11\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}4x^2-11=5\\4x^2-11=-5\end{cases}}\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=2\\x=-2\end{cases}}\\\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\end{cases}}\)
\(\left(4x-11\right)^2=25\)
Ta có: \(25=5^2\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
Vậy x= 4
k mik nha