Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha !
Bài làm :
Gọi O là giao điểm của AD và BE
Xét tam giác AOB và tam giác AOE :
AB = AE (gt)
góc BAO = góc EAO (vì AD là tia phân giác của góc A)
AO cạnh chung
=> Tam giác AOB = Tam giác AOE (c.g.c)
=> góc AOB = góc AOE (2 góc tương ứng)
Mà góc AOB + góc AOE = 1800 (kề bù)
=> 2. AOB = 1800
=> góc AOB = 1800 : 2 = 900
=> AO vuông góc với BE
=> AD cũng vuông góc với BE (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tg ABD và tg HBD có:
\(\widehat{ABD}=\widehat{HBD}\)
\(\widehat{DAB}=\widehat{BHD}\left(=90\cdot\right)\)
chung BD
suy ra tg ABD = tg HBD ( ch-gn )
=) AB=BH
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Xét tam giác vuông AHE có FI là đường trung tuyến ứng với cạnh huyền nên IF = IH = IA = AH/2 = 6 : 2 = 3 (cm)
Do IF = IH nên tam giác IHF cân tại I. Vậy thì \(\widehat{IFH}=\widehat{IHF}\)
Lại có \(\widehat{IHF}=\widehat{BHE}\) nên \(\widehat{IFH}=\widehat{BHE}\) (1)
Xét tam giác vuông BFC có FK là đường cao đồng thời là trung tuyến nên KF = KC = KB = BC : 2 = 4 (cm)
Ta cũng có KF = KB nên \(\widehat{HFK}=\widehat{HBK}\) (2)
Ta có \(\widehat{HBE}+\widehat{BHE}=90^o\) (3)
Từ (1), (2), (3) suy ra \(\widehat{IFH}+\widehat{HFK}=90^o\Rightarrow\widehat{IFK}=90^o\)
Xét tam giác vuông IFK, áp dụng định lý Pi-ta-go ta có:
IK2 = IF2 + FK2 = 32 + 42 = 25
\(\Rightarrow IK=5cm.\)
2.
Gọi J là giao điểm của AD và EF.
Xét tam giác AFE có AJ là phân giác đồng thời đường cao nên AFE là tam giác cân tại A.
Vậy nên AJ đồng thời là trung trực của EF.
Lại có D thuộc AJ nên DE = DF. (1)
Xét tam giác AFD và tam giác AED có:
AF = AE
Cạnh AD chung
DF = DE
\(\Rightarrow\Delta AFD=\Delta AED\left(c-c-c\right)\)
\(\Rightarrow\widehat{AFD}=\widehat{AED}\Rightarrow\widehat{BFD}=\widehat{DEC}\)
Lại có \(\widehat{FBD}=180^o-\widehat{BAC}-\widehat{BCA}\)
\(\widehat{DEC}=180^o-\widehat{EDC}-\widehat{CBA}=180^o-\widehat{BAC}-\widehat{BCA}\)
Vậy nên \(\widehat{DBF}=\widehat{DFB}\) hay tam giác DBF cân tại D.
Suy ra DF = DB. (2)
Từ (1) và (2) suy ra DB = DF = DE.
Để chứng minh ΔAEB = ΔAEC, ta có thể sử dụng nguyên lý cắt giao. Vì AB = AC và AE là tia phân giác góc A, nên ta có AE là đường trung trực của đoạn thẳng BC. Từ đó, ta có AE ⊥ BC. Vì AE là đường trung trực của đoạn thẳng BC, nên ta cũng có BE = EC. Như vậy, ta đã chứng minh được ΔAEB = ΔAEC.