Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(a+b=x,b+c=y;c+a=z\)
ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\Rightarrow3-\frac{1}{x+1}-\frac{1}{y+1}-\frac{1}{z+1}=1\) \(\)
=> \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\)
=> \(\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{x}{x+1}=\frac{1}{x+1}\)
Áp dụng bđt cô si ta có \(\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
=> \(\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
tương tự ta có
\(\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\)
\(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)
nhân từng vế của 3 bđt cùng chièu ta có
\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{x^2y^2z^2}{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}}=8.\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{2\left(a+b+c\right)}{a+b+c}\)= 2
Suy ra
a + b = 2c
b + c = 2a
a + c = 2b
M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
= \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
=\(\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)
=\(\frac{8abc}{abc}\)
= 8
Từ gt,ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
=> 0 = (a + b)(ca + cb + c2) - [-(a + b)ab] = (a + b)(ca + cb + c2 + ab) = (a + b)(c + a)(c + b)
=> a + b = 0 hoặc c + a = 0 hay c + b = 0.Giả sử a = -b thì a15 = -b15 nên a15 + b15 = 0 => N = 0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow ab^2+a^2b+ac^2+a^2c+bc^2+b^2c+2abc=0\)
\(\Leftrightarrow ab^2+a^2b+ac^2+bc^2+a^2c+abc+b^2c+abc=0\)
\(\Leftrightarrow\left(a+b\right)ab+c^2\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(c^2+ab+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Vậy ta có các trường hợp: \(a=-b,c=0\)hoặc \(b=-c,a=0\)hoăc \(a=-c,b=0\).
Với từng trường hợp ta đều có đpcm.
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) hinh nhu theo co dieu kien a,b,c ko dong thoi = 0
<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=> \(\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
<=> \(\left(a+b\right)\left(ac+bc+c^2\right)=-ab\left(a+b\right)\)
<=> \(\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
<=> \(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
<=> a+b=0 hoac a+c=0 hoac b+c=0
do khi luy thua a,b,c len cach so mu le la 27,41,2019 thi a,b,c ko doi dau nen \(a^{27}+b^{27}=0.hoac.b^{41}+c^{41}=0.hoac.c^{2019}+a^{2019}=0\)
P = 0
Vay P = 0
Study well
Ta có : \(\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}-\frac{1}{a}\Rightarrow\frac{b+c}{bc}=\frac{a-a-b-c}{a^2+ab+ac}\)
\(\Leftrightarrow\frac{b+c}{bc}=\frac{-b-c}{a^2+ab+ac}\Leftrightarrow\left(b+c\right)\left(a^2+ab+ac\right)=-\left(b+c\right)bc\)
\(\left(b+c\right)\left(a^2+ab+ac\right)+\left(b+c\right)bc=0\)
\(\Rightarrow\left(b+c\right)\left(a^2+ab+ac+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)[\left(a+b\right)a+c\left(a+b\right)]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\c^{2019}+a^{2019}=0\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\a^{2019}+c^{2019}=0\end{cases}}\end{cases}}}\)
đặt S=(a+1)(b+1)(c+1)
ta có:
\(\Leftrightarrow\frac{a+c}{a+1}-1=b-1\Leftrightarrow\frac{c-1}{a+1}=b-1\)
\(\frac{c+b}{c+1}=a\Leftrightarrow\frac{b-1}{c+1}=a-1\)
\(\frac{b+a}{b+1}=c\Leftrightarrow\frac{a-1}{b+1}=c-1\)
\(\Rightarrow\frac{\left(a-1\right)\left(b-1\right)\left(c-1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
=>(a+1)(b+1)(c+1)=1