Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: -1 là nghiệm của đa thức D(x)
\(\Rightarrow-2.\left(-1\right)^2+a.\left(-1\right)-7a+3=0\)
\(-2-a-7a+3\)
\(-8a+1=0\)
\(-8a=-1\)
\(a=\frac{1}{8}\)
KL: a = 1/8
Bài 1:
a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)
\(m.\left(-1\right)\) \(=2+3\)
\(m.\left(-1\right)\) \(=5\)
\(m\) \(=5:\left(-1\right)\)
\(m\) \(=-5\).
b)Có \(-1\) là nghiệm của đa thức D(x).
=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)
<=> \(\left(-2\right)-a+7a+3=0\)
<=> \(\left(-2\right)-a+7a=-3\)
<=> \(-a+7a=-2-3\)
<=> \(-a+7a=-5\)
<=> \(\left(-1+7\right)a=-5\)
<=> \(6a=-5\)
<=> a= \(\frac{-5}{6}\)
B2;
a)\(x^2+x+1\)
=(\(x^2+0,5x\))+(0,5x+0,25)+0,75
=x(x+0,25)+0,5(x+0,5)+0,75
=\(\left(x+0,5\right)^2\)+0,75.
Mà \(\left(x+0,5\right)^2\ge0\)
=>\(x^2+x+1\) không có nghiệm.
b)\(x^2+2x+2\)
=\(x^2+x+x+1+1\)
=\(\left(x^2+x\right)+\left(x+1\right)+1\)
=\(x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x+1\right)\left(x+1\right)+1\)
=\(\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\)
=> \(x^2+2x+2\) không có nghiệm.
c)\(-x^2+2x-3\)
=\(-\left(x^2-2x+3\right)\)
=\(-\left(x^2-2.x.1+2+1\right)\)
=\(-\left[\left(x-1\right)^2+2\right]\)
=\(-\left(x-1\right)^2-2\)
Mà \(\left(x-1\right)^2\le0\)
=> \(-x^2+2x-3\) không có nghiệm.
F(x) = ax3 + bx2 + cx + d
F(x) = a.x.x.x + b.x.x + c.x + d
F(x) = x.x ( ax + bx + c ) + d
F(x) = x ( ax + bx + c + d )
F(1) = 1 ( a + b + c + d )
Muốn x = 1 là nghiệm
=)) 1 ( a + b + c + d ) =0
=) a + b + c + d = 0
Bạn giải luôn hộ mik bài này vs đc ko ạ?
Bài 1: Chứng minh rằng các đa thức sau vô nghiệm:
a, \(x^2+1\)
b, \(x^2+\left|x\right|+1\)
Câu a :
Đa thức \(A\left(x\right)=x^2+ax+b\) có 2 nghiệm \(x=2\) , \(x=3\)
\(\Leftrightarrow A\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}4+2a+b=0\\9+3a+b=0\end{matrix}\right.\)
Từ hệ trên ta giải được : \(\left\{{}\begin{matrix}a=-5\\b=6\end{matrix}\right.\)
lê thị hương giang, Mashiro Shiina, Aki Tsuki, DƯƠNG PHAN KHÁNH DƯƠNG, Nguyễn Hải Dương
pls help me this question
1) Để đa thức f(x) có nghiệm thì:
\(x^3+2x^2+ax+1=0\)
\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)
\(\Rightarrow-8+8-2a+1=0\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Vậy a = \(\dfrac{1}{2}\).
2) Để đa thức f(x) có nghiệm thì:
\(x^2+ax+b=0\)
\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)
\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)
\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)
\(\Rightarrow2a+b+4-a-b-1=0\)
\(\Rightarrow a+3=0\Rightarrow a=-3\)
Thay vào (1) ta có: -3 + b + 1 =0
\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2
Vậy a = -3; b = 2.
1) Ta có: x = -2 là nghiệm của f(x)
\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)
\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)
\(\Rightarrow-2a+1=0\)
\(\Rightarrow-2a=-1\)
\(\Rightarrow a=0,5\)
2) Ta có: x = 1 là nghiệm của f (x)
\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)
\(\Rightarrow1+a+b=0\)
Ta có: x = 2 là một nghiệm của f (x)
\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)
\(\Rightarrow4+2a+b=0\)
\(\Rightarrow1+a+b=4+2a+b\)
\(\Rightarrow1+a+b-4-2a-b=0\)
\(\Rightarrow-3-a=0\Rightarrow a=-3\)
\(\Rightarrow1-3+b=0\Rightarrow b=2\)