Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)
PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)
\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)
Vậy..
a) \(\sqrt{x^2-6x+9}+x=11\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)
\(\Rightarrow x-3+x=11\)
\(\Rightarrow2x=14\Rightarrow x=7\)
Vậy........
b) \(\sqrt{3x^2-4x+3}=1-2x\)
\(3x^2-4x+3=1-4x+4x^2\)
\(3x^2-4x^2-4x+4x=-2\)
\(-x^2=-2\)
\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy.........
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Rightarrow2x-1=x-3\)
\(\Rightarrow x=1-3\)
\(\Rightarrow x=-2\)
Vậy x=-2
Ta có: \(11-\sqrt{x^2-6x+9}=\sqrt{25}\)
\(\Leftrightarrow11-\left|x-3\right|=5\)
\(\Leftrightarrow\left|x-3\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
Vậy: S={-3;9}
a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
<=>\(\left|x-2\right|+\left|x-3\right|=1\)
đến đây chia 3 trường hợp để phá trị tuyệt đối là ra
b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
câu này cũng tương tự câu a nha
Giải:
\(\sqrt{x^2-6x+9}+x=11\)
\(\Leftrightarrow\sqrt{x^2-2.x.3+3^2}+x=11\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+x=11\)
\(\Leftrightarrow\left|x-3\right|+x=11\)
\(\Leftrightarrow\left|x-3\right|=11-x\)
Xét trường hợp:
* \(x-3=11-x\)
\(\Leftrightarrow2x=14\)
\(\Leftrightarrow x=7\)
* \(x-3=-11+x\)
\(0x=-8\) (Vô lí)
Vậy ...
Cách khác :
\(\sqrt{x^2-6x+9}+x=11\)
⇔ \(\sqrt{\left(x-3\right)^2}=11-x\) ( x ≥ 3)
⇔ ( x - 3)2 = ( 11 - x)2
⇔ ( x - 3)2 - ( 11 - x)2 = 0
⇔ ( x - 3 - 11 + x)( x - 3 + 11 - x) = 0
⇔ 8( 2x - 14) = 0
⇔ x = 7 ( TM ĐK)
KL.........
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)
pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)
Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Câu b tương tự
\(\sqrt{x^2-6x+9}+x=11\); (ĐKXĐ\(\forall x\in R\))
<=> \(\sqrt{x^2-6x+9}=11-x\)
<=> \(\sqrt{\left(x-3\right)^2}=11-x\)
<=> \(|x-3|=11-x\)
<=> \(\left[{}\begin{matrix}x-3=11-x\\x-3=-11+x\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=14\\0x=-8\left(vô\right)lí\left(\right)\end{matrix}\right.\)
<=> x=7 (thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm là x=7