K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2023

\(\sqrt{x^2-6x+9}+x=11\); (ĐKXĐ\(\forall x\in R\))

<=> \(\sqrt{x^2-6x+9}=11-x\) 

<=> \(\sqrt{\left(x-3\right)^2}=11-x\)

<=> \(|x-3|=11-x\)

<=> \(\left[{}\begin{matrix}x-3=11-x\\x-3=-11+x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=14\\0x=-8\left(vô\right)lí\left(\right)\end{matrix}\right.\)

<=> x=7 (thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm là x=7

23 tháng 7 2019

d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)

PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)

\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)

Vậy..

23 tháng 7 2019

e) Bài này cũng vậy, em nghĩ bình phương lên cho lẹ :D

ĐK: x>= 4

\(\left(x-4\right)+4\sqrt{x-4}=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x-4}=-4\left(L\right)\end{matrix}\right.\Rightarrow x=4\)

23 tháng 7 2019

a) \(\sqrt{x^2-6x+9}+x=11\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Rightarrow x-3+x=11\) 

\(\Rightarrow2x=14\Rightarrow x=7\) 

Vậy........

b) \(\sqrt{3x^2-4x+3}=1-2x\)

\(3x^2-4x+3=1-4x+4x^2\) 

\(3x^2-4x^2-4x+4x=-2\) 

\(-x^2=-2\) 

\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\) 

Vậy.........

23 tháng 7 2019

d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\) 

\(\Rightarrow2x-1=x-3\) 

\(\Rightarrow x=1-3\) 

\(\Rightarrow x=-2\) 

Vậy  x=-2

Ta có: \(11-\sqrt{x^2-6x+9}=\sqrt{25}\)

\(\Leftrightarrow11-\left|x-3\right|=5\)

\(\Leftrightarrow\left|x-3\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)

Vậy: S={-3;9}

25 tháng 7 2016

a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

     <=>\(\left|x-2\right|+\left|x-3\right|=1\)

đến đây chia 3 trường hợp để phá trị tuyệt đối là ra 

b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)

câu này cũng tương tự câu a nha

15 tháng 6 2018

Giải:

\(\sqrt{x^2-6x+9}+x=11\)

\(\Leftrightarrow\sqrt{x^2-2.x.3+3^2}+x=11\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Leftrightarrow\left|x-3\right|+x=11\)

\(\Leftrightarrow\left|x-3\right|=11-x\)

Xét trường hợp:

* \(x-3=11-x\)

\(\Leftrightarrow2x=14\)

\(\Leftrightarrow x=7\)

* \(x-3=-11+x\)

\(0x=-8\) (Vô lí)

Vậy ...

15 tháng 6 2018

Cách khác :

\(\sqrt{x^2-6x+9}+x=11\)

\(\sqrt{\left(x-3\right)^2}=11-x\) ( x ≥ 3)

⇔ ( x - 3)2 = ( 11 - x)2

⇔ ( x - 3)2 - ( 11 - x)2 = 0

⇔ ( x - 3 - 11 + x)( x - 3 + 11 - x) = 0

⇔ 8( 2x - 14) = 0

⇔ x = 7 ( TM ĐK)

KL.........

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)

 

 

 

 

 

19 tháng 8 2016

a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)

pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)

Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\) 

Câu b tương tự