K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2023

Xét tam giác ABD vuông tại A có 
\(BD^2=AB^2+AD^2\Leftrightarrow BD=\sqrt{4^2+\left(3\sqrt{2}\right)^2}\Leftrightarrow BD=\sqrt{34}\)

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên D là trung điểm của BC

hay BD=CD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

c: Đặt AD/4=BD/3=k

=>AD=4k; BD=3k

Xét ΔADB vuông tại D có \(AB^2=AD^2+BD^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AD=8(cm)

28 tháng 2 2022

a) Xét tam giác ABC cân tại A:

AD là phân giác góc A (gt).

=> AD là trung tuyến (T/c tam giác cân).

=> D là trung điểm của BC.

=> BD = CD.

b) Xét tam giác ABC cân tại A:

AD là phân giác góc A (gt).

=> AD là đường cao (T/c tam giác cân).

=> AD vuông góc với BC.

c) Ta có: \(\dfrac{AD}{BD}=\dfrac{4}{3}.\Rightarrow BD=\dfrac{3}{4}AD.\)

Xét \(\Delta ADB\) vuông tại D:

\(AB^2=AD^2+BD^2\left(Pytago\right).\\ \Rightarrow AB^2=AD^2+\left(\dfrac{3}{4}AD\right)^2.\\ \Leftrightarrow AB^2=AD^2+\dfrac{9}{16}AD^2=\dfrac{25}{16}AD^2.\\ \Rightarrow10^2=\dfrac{25}{16}AD^2.\\ \Rightarrow AD^2=64.\\ \Rightarrow AD=8\left(cm\right).\)

23 tháng 3 2021

undefined

18 tháng 4 2021

bạn nào có lời giải bài này thì cho mk xin vs ạ :<

14 tháng 4 2019

chịu em lớp 6

15 tháng 2 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(AB^2+AC^2=BC^2\left(Pytago\right).\\ \Rightarrow3^2+AC^2=5^2.\\ \Leftrightarrow AC^2=5^2-3^2=16.\\ \Rightarrow AC=4\left(cm\right).\)

b) Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E:

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác góc B).

BD chung.

\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).

c) Xét \(\Delta ADE:\)

\(AD=ED\) \(\left(\Delta ABD=\Delta EBD\right).\)

\(\Rightarrow\) \(\Delta ADE\) cân tại D.

10 tháng 1 2024

loading... a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

⇒ BD = CD

⇒ D là trung điểm của BC (1)

Do ∆ABD = ∆ACD (cmt)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC (2)

Từ (1) và (2) ⇒ AD là đường trung trực của BC

b) Sửa đề: Chứng minh ∆ADM = ∆ADN

Do ∠BAD = ∠CAD (cmt)

⇒ ∠MAD = ∠NAD

Xét ∆ADM và ∆ADN có:

AD là cạnh chung

∠MAD = ∠NAD (cmt)

AM = AN (gt)

⇒ ∆ADM = ∆ADN (c-g-c)

⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)

⇒ DN ⊥ AN

⇒ DN ⊥ AC

d) Do K là trung điểm của CN (gt)

⇒ CK = KN

Xét ∆DKC và ∆EKN có:

CK = KN (cmt)

∠DKC = ∠EKN (đối đỉnh)

KD = KE (gt)

⇒ ∆DKC = ∆EKN (c-g-c)

⇒ ∠KDC = ∠KEN (hai góc tương ứng)

Mà ∠KDC và ∠KEN là hai góc so le trong

⇒ EN // CD

⇒ EN // BC (3)

∆AMN có:

AM = AN (gt)

⇒ ∆AMN cân tại A

⇒ ∠AMN = (180⁰ - ∠MAN) : 2

= (180⁰ - ∠BAC) : 2 (4)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)

Từ (4) và (5) ⇒ ∠AMN = ∠ABC

Mà ∠AMN và ∠ABC là hai góc đồng vị

⇒ MN // BC (6)

Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng

6 tháng 1

Boy sigma boi