![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2y-14x+y=33
=>3y-14x=33
=>3y=14x+33
=>y=14/3x+11
=>x chia hết cho 3 và y=14/3x+11
![](https://rs.olm.vn/images/avt/0.png?1311)
em lớp 5 mà còn bt á
2xy – 10x + y = 16
⇒ ( 2x + 1 ) – 10x = 16
⇒ 2x + 1 = 0
⇒ 2x = -1
⇒ 2 ( x – 5 ) = 0
⇒ y = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x-2xy+y=0
=> x-(2xy-y)=0
=> x- y(2x-1)=0
=> 2x-2y(2x-1)=0
=>( 2x-1) -2y(2x-1)=-1
=> (2x-1)(1-2y)=-1
=> ( 2x-1 ; 1-2y ) = ( -1 ;1 ) ; (1;-1 )
=> (x;y)=( 0 ; 0 ) ; ( 1;1)
b) x2 - 2y2 = 1
=> x2 - 1 = 2y2 => (x - 1).(x + 1) = 2y2 (1)
Xét tổng (x - 1) + (x + 1) = 2x là số chẵn => x - 1 ; x + 1 cùng tích chẵn hoặc lẻ. (2)
Từ (1), (2) => x - 1; x + 1 cùng là số chẵn.
=> (x - 1).(x + 1) là số chẵn <=> 2y2 là số chẵn <=> y2 là số chẵn.
Mà y là số nguyên tố => y = 2. Khi đó x = 1 + 2.22 = 9 => x = 3
Vậy x = 3 và y = 2
x2-2y2=1
=>x2=2y2+1
=> x2 lẻ=>x=2k+1
=>4k2+4k+1=1+2y2=>2y2 chia hết cho 4=> y=2
=>x=3
Gợi ý:
\(2xy+14x+y=33\)
\(\Rightarrow2x\left(y+7\right)+y+7=33+7\)
\(\Rightarrow\left(2x+1\right)\left(y+7\right)=40\)
\(\Rightarrow\left(2x+1;y+7\right)\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Đến đây thì bạn làm tiếp nhé!
Nhóm các hạng tử có chứa 𝑥 x và 𝑦 y: 2 𝑥 𝑦 + 14 𝑥 + 𝑦 = 33 2xy+14x+y=33 Nhóm các hạng tử có chứa 𝑥 x và 𝑦 y: 2 𝑥 ( 𝑦 + 7 ) + 𝑦 = 33 2x(y+7)+y=33 Biến đổi phương trình: 2 𝑥 ( 𝑦 + 7 ) + 𝑦 = 33 2x(y+7)+y=33 Thêm 7 vào cả hai vế: 2 𝑥 ( 𝑦 + 7 ) + ( 𝑦 + 7 ) = 40 2x(y+7)+(y+7)=40 Nhân vế trái: ( 𝑦 + 7 ) ( 2 𝑥 + 1 ) = 40 (y+7)(2x+1)=40 Tìm các cặp số nguyên 𝑥 x và 𝑦 y thỏa mãn: Ta xét các ước của 40: ± 1 , ± 2 , ± 4 , ± 5 , ± 8 , ± 10 , ± 20 , ± 40 ±1,±2,±4,±5,±8,±10,±20,±40. Vì 2 𝑥 + 1 2x+1 là số lẻ, nên 𝑦 + 7 y+7 phải là một trong các ước lẻ của 40: ± 1 , ± 5 ±1,±5. Từ đó, ta có các trường hợp sau: Trường hợp 1: 𝑦 + 7 = 1 y+7=1 và 2 𝑥 + 1 = 40 2x+1=40 Giải hệ: 𝑦 = − 6 , 𝑥 = 19 y=−6,x=19 Trường hợp 2: 𝑦 + 7 = − 1 y+7=−1 và 2 𝑥 + 1 = − 40 2x+1=−40 Giải hệ: 𝑦 = − 8 , 𝑥 = − 21 y=−8,x=−21 Trường hợp 3: 𝑦 + 7 = 5 y+7=5 và 2 𝑥 + 1 = 8 2x+1=8 Giải hệ: 𝑦 = − 2 , 𝑥 = 3 y=−2,x=3 Trường hợp 4: 𝑦 + 7 = − 5 y+7=−5 và 2 𝑥 + 1 = − 8 2x+1=−8 Giải hệ: 𝑦 = − 12 , 𝑥 = − 9 y=−12,x=−9 Kết luận: Các cặp số nguyên 𝑥 x và 𝑦 y thỏa mãn phương trình là: ( 𝑥 , 𝑦 ) = ( 19 , − 6 ) , ( − 21 , − 8 ) , ( 3 , − 2 ) , ( − 9 , − 12 ) (x,y)=(19,−6),(−21,−8),(3,−2),(−9,−12) Vậy, các nghiệm của phương trình là ( 𝑥 , 𝑦 ) = ( 19 , − 6 ) , ( − 21 , − 8 ) , ( 3 , − 2 ) , ( − 9 , − 12 ) (x,y)=(19,−6),(−21,−8),(3,−2),(−9,−12).