K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

sử dụng phản chứng để chứng minh:

a và b cùng dấu => ab>=0

vậy ab lớn hơn hoặc bằng 0 với mọi a và b cùng dấu 

:))

7 tháng 8 2020

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

7 tháng 8 2020

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

26 tháng 12 2017

\(/(/frac//\)la j zay

26 tháng 12 2017

Áp dụng BĐT Cô si với a,b,c>0 ta có: 

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\)

Tương tự \(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

                \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

\(\Rightarrow2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

AH
Akai Haruma
Giáo viên
15 tháng 5 2018

Lời giải:

Áp dụng BĐT Cauchy:

\(\frac{a^3}{bc}+b+c\geq 3\sqrt[3]{a^3}=3a\)

\(\frac{b^3}{ca}+c+a\geq 3\sqrt[3]{b^3}=3b\)

\(\frac{c^3}{ab}+a+b\geq 3\sqrt[3]{c^3}=3c\)

Cộng theo vế thu được:

\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}+2(a+b+c)\geq 3(a+b+c)\)

\(\Rightarrow \frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\geq a+b+c\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

15 tháng 5 2018

Akai Haruma cảm ơn thầy /cô

23 tháng 10 2016

\(A=\left(x^2+2x+1\right)+\left(y^2-6y+9\right)=\left(x+1\right)^2+\left(y-3\right)^2\)

Mà (x+1)^2>=0

(y-3)^2>=0

=> (x+1)^2+(y-3)^2>=0

5 tháng 5 2017

\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{\left(a+b\right)^2}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{a^2+2ab+b^2}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}-\frac{a^2+2ab+b^2}{8}\ge\)

\(\Leftrightarrow\frac{4a^2-4ab+4b^2-a^2-2ab-b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3a^2-6ab+3b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3\left(a-b\right)^2}{8}\ge0\) (luôn đúng)

Vậy \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

8 tháng 2 2017

Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)

Ta có:

\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)

Dấu = xảy ra khi x = y # 0

8 tháng 2 2017

\(\frac{x}{y}+\frac{y}{x}\ge2\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng!