Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi :2\(\frac{1}{4}\)=\(\frac{9}{4}\)
\(\frac{9}{4}\)gấp số lần \(\frac{1}{8}\)là :
\(\frac{9}{4}\) : \(\frac{1}{8}\)= 18 ( lần )
Vậy kết quả là :B
2\(\frac{1}{4}\)= \(\frac{9}{4}\)= \(\frac{18}{8}\).
\(\frac{18}{8}\) gấp số lần \(\frac{1}{8}\) là:
\(\frac{18}{8}\): \(\frac{1}{8}\)= 8( lần)
=> 2\(\frac{1}{4}\) gấp 8 lần \(\frac{1}{8}\).
\(1:\frac{1}{10}=1.\frac{10}{1}=\frac{10}{1}=10\)
\(\frac{1}{10}:\frac{1}{100}=\frac{1}{10}.\frac{100}{1}=\frac{100}{10}=10\)
\(\frac{1}{100}:\frac{1}{1000}=\frac{1}{100}.\frac{1000}{1}=\frac{1000}{100}=10\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
1 gấp 10 1/10
1/10 gấp 1/100
1/100 gấp 10 lần 1/1000 nha bạn
cái nào cx gấp 10 lần
1 gấp 10 lần \(\frac{1}{10}\)
\(\frac{1}{100}\) gấp 10 lần
\(\frac{1}{10}\) gấp 10 lần \(\frac{1}{100}\)
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006
\(2\dfrac{1}{4}=\dfrac{9}{4}\\ \dfrac{9}{4}:\dfrac{1}{8}=\dfrac{9}{4}\times8=18\)
\(=>\) \(2\dfrac{1}{4}\) gấp \(18\) lần \(\dfrac{1}{8}\)
đổi 2 và 1/4 = 2,25 ; 1/8 = 0,125
2 và 1/4 gấp 1/8 số lần là : 2,25 : 0,125 = 18