Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
1. Kết quả của phép tính nào dưới đây chia hết 7 ?
a. 2021 × 73 + 49 +1
b. 2021 × 73 + 27 +1
c.2022 × 73 + 49
d.2021 × 73 + 50
Để olm giúp em nhá
(9989)69 = 996141 = (992)3070.99 = (\(\overline{..01}\))3070.99 = \(\overline{..99}\)
62021 = (65)404.6 = 7776404.6 = \(\overline{...76}.6\) = \(\overline{...56}\)
A=142022.162022=(14.16)2022=2242022= (2242)1001= \(\overline{...76}\)1001=\(\overline{...76}\)
\(n\)là số nguyên tố lớn hơn \(3\)nên có dạng \(n=3k+1\)hoặc \(n=3k+2\)với \(k\inℕ^∗\).
Với \(n=3k+1\): \(n^2=\left(3k+1\right)^2=9k^2+6k+1\)chia cho \(3\)dư \(1\).
Với \(n=3k+2\): \(n^2=\left(3k+2\right)^2=9k^2+12k+4\)chia cho \(3\)dư \(1\).
Do đó \(n^2\)đều chia cho \(3\)dư \(1\).
Khi đó \(n^2+2021\)chia hết cho \(3\).
Mà \(n^2+2021>3\)do đó \(n^2+2021\)là hợp số.
Lời giải:
Đặt ƯCLN$(2021^2+2^{2021}, 2021)=d$
Khi đó:
$2021^2+2^{2021}\vdots d$ và $2021\vdots d$
$\Rightarrow 2^{2021}\vdots d$
Vậy $d$ là ước chung của $2021$ và $2^{2021}$
Mà $2021, 2^{2021}$ nguyên tố cùng nhau nên $d=1$
$\Rightarrow ƯCLN(2021^2+2^{2021}, 2021)=1$
Tức là 2 số đó nguyên tố cùng nhau (đpcm)
sssss