K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2023

Sửa: `b=x^3+6y+35` (chắc bạn ấn vội nên chưa ấn "Shift" mà đã ấn dấu "=" nên chắc đó là dấu "+" nhỉ?)

Thay `x=3;y=-4` vào `b` có:

`b=3^3 + 6.(-4)+35`

`b=27-24+35`

`b=3+35=38`

13 tháng 12 2019

Thay x = 3, y = -4 vào biểu thức B để tìm giá trị của biểu thức B ta có:

 

3 3   +   6 . ( - 4 )   -   35   =   27   -   24   -   35   =   3   -   35   =   - 32

Vậy B = -32 tại x = 3, y = -4

Chọn đáp án C

23 tháng 11 2024

a) \(6a^3-a^{10}+4a^3+a^{10}-8a^3=4a^3-2a^3=2a^3=2\left(-2\right)^3=2\left(-8\right)=-16\)

29 tháng 3 2017

a) \(x^2\) \(+2xy-3x^3\) \(+2y^3+3x^3-y^3\)

\(=x^2+2xy-\left(3x^3-3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Tại \(x=5;y=4\) thì:

\(5^2+2.5.4+4^3\)

\(=129\)

Vậy ....

b) Tại \(x=-1;y=-1\):

\(\left(-1\right).\left(-1\right)-\left(-1\right)^2.\left(-1\right)^2+\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

\(=1\)

Vậy ....

29 tháng 3 2017

a, x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+(2y3-y3)

= x2+2xy+y3

Thay x=5 và y=4 vào đa thức x2+2xy+y3, ta có

52+2.5.4+43=129

Vậy giá trị của đa thức x2+2xy+y3 tại x=5 và y=4 là 129

b, xy- x2y2+x4y4-x6y6+x8y8

= xy-(xy)2+(xy)4-(xy)6+(xy)8

Ta có: xy=(-1)(-1)=1

Thay xy vào đa thức xy-(xy)2+(xy)4-(xy)6+(xy)8 ta có :

1-12+14-16+18=1-1+1-1+1=1

Vậy giá trị của biểu thức xy- x2y2+x4y4-x6y6+x8y8 tại x=-1 và y=-1 là 1

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1

4 tháng 3 2020

Rút gọn A trước khi tính :

\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)

\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)

Thay \(x=-2,y=\frac{3}{4}\) vào A có :

\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)

\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)

:)) Số xấu ....

4 tháng 3 2020

Xét biểu thức A, ta suy ra:

\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)

Tại x=-2 và y=3/4 thì:

\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)

(phần này bạn tự tính)

\(\)

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

29 tháng 8 2017

a, Ta có : (x + 4).(y + 3) = 3

=> x + 4 và y + 3 thuộc Ư(3) = {-3;-1;1;3}

+) x + 4 = -3 thì y + 3 = -1

=> x = -7 và y = -4

+) x + 4 = -1 thì y + 3 = -3

=> x = -5 và y = -6

+) x + 4 = 1 và y + 3 = 3

=> x = -3 và y = 0

+) x + 4 = 3 và y + 3 = 1

=> x = -1 và y = -2

30 tháng 4 2020

a) \(xy+x^2y^2+x^3y^3+...+x^{2004}y^{2004}\)

Với x=1; y=-1

=> \(\left(-1\right)+1+\left(-1\right)+1+...+\left(-1\right)+1=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)

\(=0\)

b) \(6x-12\left(y+2\right)+6y\)

\(=6x-12y+24-6y\)

\(=6\left(y-1\right)-12y+14+6y\)

\(=24-6=18\)

c) bạn bổ sung thêm đề

26 tháng 6 2016

x/1,2=y/1,3=z/1,4 va -2x-y=5,5