\(\frac{a}{b}\)\(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

a) ta thay 1-2002/2003= 1/2003 va 1-2003/2004=1/2004 

ma 1/2003>1/2004 =>2002/2003<2003/2004

b) ta co -2002/2003<1<2005/2004

18 tháng 6 2016

a.2002/2003<2003/2004

b.-2002/2003<2005/-2004

neu dung thi ?

5 tháng 9 2019

2004.2003=412008

2003.2003= 412009

\(\Rightarrow\frac{2004}{2003}< \frac{2003}{2002}\Leftrightarrow x< y.\)

7 tháng 7 2016

- Tất cả vế sau đều lớn hơn vì

VD: a) 99/-100 < -1

-102/101 > -1

- Cứ so sánh với -1 

Ủng hộ Mk nha

30 tháng 5 2017

Ta có 2004/2003 =  2003+ 1/ 2003 = 1 + 1/2003

2003/2002= 2002 + 1/ 2002 = 1+ 1/2002

Do 1/2003 < 1/2002 =>  1 + 1/2003 <  1+ 1/2002 hay 2004/2003 < 2003/2002

30 tháng 5 2017

\(\frac{2004}{2003}\)= 1,0004992

\(\frac{2003}{2002}\)= 1,0004995

Vậy ,\(\frac{2003}{2002}\)lớn hơn \(\frac{2004}{2003}\).

18 tháng 7 2016

a.

Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)

\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)

\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)

.....

\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)

b.

Cách 1:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)

Cách 2:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7+6x}=0\)

\(2x+1=0\Rightarrow x=-\frac{1}{2}\)

\(3y-2=0\Rightarrow y=\frac{2}{3}\)

19 tháng 7 2016

thank you nha

VC
30 tháng 6 2020

Từ đề bài ta có : \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\) ( T/c tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

Và \(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\left(\frac{a}{c}\right)^{2003}=\left(\frac{b}{d}\right)^{2003}\Leftrightarrow\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}\)

Áp dụng t/x dãy tỉ số bằng nhau ta có : \(\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}=\frac{a^{2003}+b^{2003}}{c^{2003}+d^{2003}}\left(1\right)\)

Mà \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}=\frac{\left(a-b\right)^{2003}}{\left(c-d\right)^{2003}}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{\left(a-b\right)^{2003}}{\left(c-d\right)^{2003}}=\frac{a^{2003}+b^{2003}}{c^{2003}+d^{2003}}\left(đpcm\right)\)

28 tháng 12 2018

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

28 tháng 12 2018

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn