Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: Câu hỏi của Vương Ái Như - Toán lớp 7 - Học toán với OnlineMath
câu 2:
Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}.\left(2^4-2\right)=2^{17}.14⋮14\)
câu 3:
\(4x=7y=3x\Rightarrow\frac{4x}{84}=\frac{7y}{84}=\frac{3z}{84}\Rightarrow\frac{x}{21}=\frac{y}{12}=\frac{z}{28}=\frac{x+y+z}{21+12+28}=\frac{61}{61}=1\)
\(\Rightarrow x=21,y=12,z=28\)
câu 4:
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60,b=9.5=45,c=8.5=40\)
a) \(\left(\frac{1}{16}\right)^x=\left(\frac{1}{2}\right)^{10}\)
\(\left(\frac{1}{2}\right)^{4x}=\left(\frac{1}{2}\right)^{10}\)
\(\Rightarrow4x=10\)
x = 2,5
\(\left(3x+1\right)^2=25\)
\(\Rightarrow\left(3x+1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Rightarrow\orbr{\begin{cases}3x=5-1=4\\3x=-5-1=-6\end{cases}}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
\(\left[x-\frac{1}{2}\right]+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x-0=\frac{5}{8}\)
\(x=\frac{5}{8}\)
\(\left[x+\frac{3}{4}\right]-\frac{1}{3}=0\)
\(x+\frac{3}{4}=0+\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{-5}{12}\)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
cách 1:=> (x - 7)^(x+1)= (x-7)^(x+11)
TH1: x-7=0 => x=7 => 0^8=0^18 (TM)
TH2: x-7=1 => x=8 (TM)
TH3: x khác 7 và 8 => x+1=x+11 => vô lý => loại
KL: x = 7 hoặc x=8
( x-7)^( x+1) - ( x-7)^(x+11) = 0
( x-7)^( x+1) - ( x-7)^(x+1)*x^10 = 0
( x-7)^( x+1) (1-x^10) = 0
tới đây dễ òi
a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
a, => x . (-x) = -2 : \(\frac{8}{25}\)
=> - (x2) = - \(\frac{16}{25}\)
=> \(-\left(x^2\right)=-\left[\left(\frac{4}{5}\right)^2\right]\)
=> \(x=\frac{4}{5}\)
b, => \(\left(x-1\right):2=\frac{5}{4}\)
=> \(x-1=\frac{5}{4}.2\)
=> \(x-1=\frac{5}{2}\)
=> \(x=\frac{5}{2}+1\)
=> \(x=\frac{7}{2}\)