Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=-4x+1\end{cases}}\Rightarrow\orbr{\begin{cases}4x-\frac{3}{2}x-1=\frac{1}{2}\\-4x-\frac{3}{2}x+1=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=\frac{3}{2}\\-\frac{11}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
phần b ở đề bài mình ghi sai, là bằng 0 chứ ko phải bằng 10
\(\frac{x-2}{x-1}=\frac{x+4}{x-7}\)
<=>(x-2)(x-7)=(x-1)(x+4)
<=>x2-9x+14=x2+3x-4
<=>x2-9x-x2-3x=-4-14
<=>-12x=-18
<=>x=\(\frac{3}{2}\)
2,\(\frac{x+4}{20}=\frac{5}{x+4}\)
<=>(x+4)2=100
<=>x2+8x+16=100
<=>x2+8x-84=0
<=>x2+14x-6x-84=0
<=>x(x+14)-6(x+14)=0
<=>(x-6)(x+14)=0
<=>\(\orbr{\begin{cases}x-6=0\\x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-14\end{cases}}}\)
TH1: Với x < 1
\(\Leftrightarrow-\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(\Leftrightarrow1-x+5-x=4\)
\(\Leftrightarrow6-2x=4\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)(nhận)
TH2: Với \(1\le x\le5\)
\(\Leftrightarrow\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(\Leftrightarrow x-1+5-x=4\)
\(\Leftrightarrow4=4\) luôn đúng!
TH3: Với x > 5
\(\Leftrightarrow\left(x-1\right)+\left(x-5\right)=4\)
\(\Leftrightarrow x-1+x-5=4\)
\(\Leftrightarrow2x-6=4\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\) (loại)
Vậy \(1\le x\le5\)