Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
a.\(DK:x,y>0\)
Ta co:
\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b.
Ta lai co:
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)
Dau '=' xay ra khi \(x=y=4\)
Vay \(A_{min}=1\)khi \(x=y=4\)
2/ Ta có
\(\frac{x+y}{4}+\frac{x^2}{x+y}\)\(\ge\)x
\(\frac{y+z}{4}+\frac{y^2}{y+z}\ge y\)
\(\frac{z+x}{4}+\frac{z^2}{z+x}\ge z\)
Từ đó ta có VT \(\ge\)\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}\)= \(\frac{1}{2}\)
Đạt được khi x = y = z = \(\frac{1}{3}\)
em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng
Câu 1:
\(y^2+yz+z^2=1-\frac{3x^2}{2}\)
\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)
\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)
\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)
\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)
\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)
Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)
\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)
Câu 2:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Câu 3:
\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )
\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng BĐT Cauchy:
\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)
\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
Câu 4:
Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)
\(M=a^2-2ab+3b^2-2a+1\)
\(M=a^2-a\left(2b+2\right)+3b^2+1\)
\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)
\(=-8b^2+8b\)
\(=-8b\left(b+1\right)\ge0\)
Vì \(b\ge0\) nên \(-8b\left(b+1\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow b=0\)
Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=1\)
Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Bạn tham khảo ở đây ^^
http://olm.vn/hoi-dap/question/624173.html