\(P\left(x\right)=3x^2-5x^2+2x-x^2+4-x^4-\frac{1}{2}+x-2x\)

a) Thu gọ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

\(P\left(x\right)=3x^2-5x^2+2x-x^2+4-x^4-\frac{1}{2}+x-2x\)

            =\(\left(3x^2-5x^2-x^2\right)-x^4+\left(2x+x-2x\right)+\left(4-\frac{1}{2}\right)\)

            =\(-3x^2-x^4+x+\frac{7}{2}\)

giảm ->  =\(-x^4-3x^2+x+\frac{7}{2}\)

b)\(P\left(1\right)=-1^4-3.1^2+1+\frac{7}{2}\)

               =\(-1-3.1+1+\frac{7}{2}\)

               =\(-1-3+1+\frac{7}{2}\)

               =\(\frac{1}{2}\)

\(P\left(\frac{1}{2}\right)=-\frac{1}{2}^4-3.\frac{1}{2}^2+\frac{1}{2}+\frac{7}{2}\)

              =\(-\frac{1}{16}-3.-\frac{1}{4}+\frac{1}{2}+\frac{7}{2}\)

              =\(-\frac{1}{16}-\left(-\frac{3}{4}\right)+\frac{1}{2}+\frac{7}{2}\)

             =\(\frac{75}{16}\)

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4x4+5x3x34x3+3x2x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1=x4+2x2+1

b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4

M(1)=(1)4+2.(1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

9 tháng 8 2017

a)  \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)

   \(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\) 

Q(x)  \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)

b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\)\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

5 tháng 4 2015

Dễ mà bạn!

a)

M(x)= 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3

M(x)= 2x^4-x^4+5x^3-4x^3-x^3-3x^2-x^2+1

M(x)= x^4+2x^2+1

b)

M(x)= x^4+2x^2+1

M(1)= 1^4+2.1^2+1

M(1)= 1+2+1

M(1)= 4

 

M(-1)= (-1)^4+2.(-1)^2+1

M(-1)= 1+2+1

M(-1)= 4

c) Vì x^4+2x^2+1 >= 1

Nên M(x)= x^4+2x^2+1 không có nghiệm

15 tháng 6 2020

* M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

        = ( 2x4 - x4 ) + ( 5x3 - x3 - 4x3 ) + ( 3x2 - x2 ) + 1 

        = x4 + 2x2 + 1

* M(1) = 14 + 2 .12 + 1 = 1 + 2 . 1 + 1 = 4

  M(-1) = (-1)4 + 2. (-1)2 + 1 = 1 + 2.1 + 1 = 4

* Ta có \(x^4\ge0\forall x,x^2\ge0\forall x\Rightarrow x^4+x^2+1\ge1>0\)

=> M(x) vô nghiệm 

14 tháng 4 2018

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)