K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2019

Nếu \(xy\le0\Rightarrow M\le0;\) nếu \(xy>0\Rightarrow M>0\Rightarrow\) GTLN nếu có của M sẽ xảy ra khi \(xy>0\)

Xét \(xy>0\Rightarrow xy+1>0\Rightarrow x>0\Rightarrow y>0\)

\(x\ge xy+1\Leftrightarrow1\ge y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\Rightarrow\frac{y}{x}\le\frac{1}{4}\) \(\Rightarrow\frac{x}{y}\ge4\)

\(M=\frac{3xy}{x^2+y^2}=\frac{3}{\frac{x}{y}+\frac{y}{x}}=\frac{3}{\frac{15}{16}.\frac{x}{y}+\frac{x}{16y}+\frac{y}{x}}\le\frac{3}{\frac{15}{16}.4+2\sqrt{\frac{xy}{16yx}}}=\frac{12}{17}\)

\(\Rightarrow M_{max}=\frac{12}{17}\) khi \(\left\{{}\begin{matrix}x=2\\y=\frac{1}{2}\end{matrix}\right.\)

31 tháng 8 2015

Trước khi bắt đầu ta nhắc lại bất đẳng thức Cauchy-Schwartz sau: Với \(a,b>0\) thì  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Để chứng minh ta áp dụng bất đẳng thức Cô-Si liên tiếp hai lần như sau \(a+b\ge2\sqrt{ab},\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\to\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4.\)

Theo giả thiết \(x+y=1\). Theo bất đẳng thức Cô-Si ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) 

Đặc biệt ta suy ra \(-5xy\ge-\frac{5}{4}.\)         (1)

Theo bất đẳng thức Cauchy ta có \(\frac{1}{2xy}+8xy\ge2\sqrt{\frac{1}{2xy}\cdot8xy}=4\to\frac{1}{2xy}+8xy\ge4.\)      (2)

Mặt khác, sử dụng bất đẳng thức Cauchy - Schwartz ta có \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=4.\)           (3)

Từ ba bất đẳng thức (1), (2), (3), ta cộng lại sẽ được \(\frac{1}{x^2+y^2}+\frac{1}{xy}+3xy\ge4+4-\frac{5}{4}=\frac{27}{4}.\) (ĐPCM)
 

 

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại