Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
phần a bạn Nguyễn xuân khải làm đúng rồi nên mình chỉ làm phần b
b)h(2)=2*2^2-7m*2+4=8-14m+4=0
=>4-14m=0
=>14m=4
=>m=\(\frac{2}{7}\)
Vậy m=\(\frac{2}{7}\)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
ta có: H(x)=0 <=> \(3x^4-3x^2\)=0
=> \(3x^2x^2-3x^2\)=0
=> \(3x^2\left(x^2-1\right)=0\)
=> \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)
vậy x=0, x=1 là nghiệm của đa thức H(x)
Ta có: Cho H(x) = 0
=> 3x4 - 3x2 = 0
=> 3x2.(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)
ta có:h(x) = (4 - x)(2 + x)=0
=>4-x=0 hoặc 2+x=0
=>x=4 hoặc -2
1/ Ta có H (x) có một nghiệm bằng 2
=> H (2) = 0
=> \(4a-2+1=0\)
=> \(4a-\left(2-1\right)=0\)
=> \(4a-1=0\)
=> \(4a=1\)
=> \(a=\frac{1}{4}\)
Vậy khi \(a=\frac{1}{4}\)thì H (x) có một nghiệm bằng 2.
2/
Ta có \(x^4\ge0\)với mọi giá trị của x
=> \(x^4+101>0\)với mọi giá trị của x
=> f (x) không có nghiệm (đpcm)
3/
Ta có \(g\left(1\right)=-2-7.1+8=-2-7+8=-9+8=-1\ne0\)
=> 1 không phải là nghiệm của đa thức g (x)
và \(g\left(3\right)=-2-7.3+8=-2-21+8=-23+8=-15\ne0\)
=> 3 không phải là nghiệm của đa thức g (x)
2. Chứng minh f(x)=x4 + 101 không có nghiệm
Ta có:x4+101=0
=>x4=-101
=>phương trình vô nghiệm vì x4\(\ge\)0 mà -101<0
\(h\left(x\right)=2x^4+x^2-16\)
Đặt t=x2
Ta được\(h\left(x\right)=2t^2+t-16\)
\(\Delta=1^2-4\cdot2\cdot\left(-16\right)=129>0=>\sqrt{\Delta}=\sqrt{129}\)
Vì \(\Delta>0\) nên đa thức h(x) có 2 nghiệm phân biệt x1,x2
\(x_1=\frac{-1+\sqrt{129}}{4}\)
\(x_2=\frac{-1-\sqrt{129}}{4}\)
ta có:h(x) = (4 - x)(2 + x)=0
=>4-x=0 hoặc 2+x=0
=>x=4 hoặc -2