
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1
Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)
Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)
\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)
Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không
Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn
Vậy n=1 hoặc n=5
Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1
*Xét 7n+13\(⋮\)n+1(1)
+)Ta có:n+1\(⋮\)n+1
=>7.(n+1)\(⋮\)n+1
=>7n+7\(⋮\)n+1(2)
+)Từ (1) và (2)
=>(7n+13)-(7n+7)\(⋮\)n+1
=>7n+13-7n-7\(⋮\)n+1
=>6\(⋮\)n+1
=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}
=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}
=>n\(\in\){1;2}(*)
*Xét 7n+13\(⋮\)3n+1
=>3.(7n+13)\(⋮\)3n+1
=>21n+39\(⋮\)3n+1(3)
+)Ta có:3n+1\(⋮\)3n+1
=>7.(3n+1)\(⋮\)3n+1
=>21n+7\(⋮\)3n+1(4)
+)Từ (3) và (4)
=>(21n+39)-(21n+7)\(⋮\)3n+1
=>21n+39-21n-7\(⋮\)3n+1
=>32\(⋮\)3n+1
=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}
+)Ta có bảng:
3n+1 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 | -16 | 16 | -32 | 32 |
n | \(\frac{-2}{3}\)\(\notin\)N* | 0\(\notin\)N* | -1\(\notin\)N* | \(\frac{1}{3}\)\(\notin\)N* | \(\frac{-5}{3}\)\(\notin\)N* | 1\(\in\)N* | -3\(\notin\)N* | \(\frac{7}{3}\)\(\notin\)N* | -5\(\notin\)N* | 5\(\in\)N* | \(\frac{-31}{3}\)\(\notin\)N* | \(\frac{31}{3}\)\(\notin\)N* |
=>n\(\in\){1;5}(**)
+)Từ (*) và (**)
=>n=1
Vậy n=1
Chúc bn học tốt

a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)
\(\Rightarrow-4< n< 2\)
NHững câu còn lại lm tưng tự!

ta có :
\(M=\frac{3\times\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\) nguyên khi n+4 là ước của 17 hay
\(n+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow n\in\left\{-21;-5;-3;13\right\}\)

Để thỏa mãn đề bài thì 6n+7 chia hết cho 3n+1 ta có
\(6n+7⋮3n+1\Rightarrow\left(6n+2\right)+5⋮3n+1\Rightarrow2\left(3n+1\right)+5⋮3n+1\Rightarrow5⋮3n+1\)
Mà\(n\inℤ\Rightarrow3n+1\inℤ\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
ta có bảng sau:
3n+1 | -1 | 1 | -5 | 5 |
3n | -2(L) | 0 | -6 | 4(L) |
n | 0 | -2 |
Vậy\(n\in\left\{-2;0\right\}\)

A=\(\frac{3n+4}{n+2}\)=\(\frac{3n+6-2}{n+2}\)=\(\frac{3.\left(n+2\right)-2}{n+2}\) =3-\(\frac{2}{n+2}\)
Để A có giá trị bé nhất=>\(\frac{2}{n+2}\) có giá trị lớn nhất
=>n+2 là số nguyên dương bé nhất
=>n+2=1=>n=-1 <=>A=1

.........................
= \(\frac{1}{2}\). ( \(\frac{2}{1.3}\) + \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) ... + \(\frac{2}{x.\left(x+2\right)}\) )
= \(\frac{1}{2}\) . ( 1 - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{5}\) + \(\frac{1}{5}\) - \(\frac{1}{7}\) + ... + \(\frac{1}{x}\)- \(\frac{1}{x+2}\) )
= ................
Bạn tự làm tiếp nhé ! Chúc bạn học tốt :)
\(\frac{3n+2}{n-1}\Rightarrow3n+2⋮n-1\)
\(3\left(n-1\right)+5⋮n-1\)
\(5⋮n-1\)hay \(n-1\inƯ\left(5\right)=\left\{1;5\right\}\)