Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)=\(\sqrt{2+5+7+2\sqrt{5.2}+2\sqrt{2.7}+2\sqrt{3.5}}\)
=\(\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}\)=\(\sqrt{2}+\sqrt{5}+\sqrt{7}\)=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Vậy a+b+c=14
Ta có : \(\sqrt{\text{a}-\sqrt{\text{b}}}\text{=}\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\) \(\left(b\ge0,a\ge\sqrt{b}\right)\)
Đặt \(x=\sqrt{a-\sqrt{b}}+\sqrt{a+\sqrt{b}}\) => \(x>0\Rightarrow x=\sqrt{x^2}\)
Ta có : \(x^2=2a+2\sqrt{a^2-b}=4\left(\frac{a+\sqrt{a^2-b}}{2}\right)\)\(\Rightarrow x=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)
hay \(\sqrt{a-\sqrt{b}}+\sqrt{a+\sqrt{b}}=2\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\)(1)
Đặt \(y=\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\Rightarrow y>0\Rightarrow y=\sqrt{y^2}\)
Ta có ; \(y^2=2a-2\sqrt{a^2-b}=4\left(\frac{a-\sqrt{a^2-b}}{2}\right)\Rightarrow y=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
hay \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=2\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(2)
Trử (1) và (2) theo vế ta được :
\(\sqrt{a-\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)(đpcm)
\(VT=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\frac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(a-b\right)}{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\frac{a^2-a\sqrt{ab}-b^2-b\sqrt{ab}-a^2+b^2}{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{a+b}{\sqrt{a}+\sqrt{b}}.\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{-\left(a+b\right)\sqrt{ab}}=\sqrt{b}-\sqrt{a}=VP\)
Vậy đẳng thức được chứng minh
\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{\frac{4}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10\sqrt{3}}{3}\)
\(=-9\sqrt{3}+\frac{10\sqrt{3}}{3}\)
\(=\frac{-27\sqrt{3}}{3}+\frac{10\sqrt{3}}{3}\)
\(=\frac{-17\sqrt{3}}{3}\)
\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\) \(=\frac{1^3-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\)
\(=\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}\)
\(=a+\sqrt{a}+1\)
chúc bn học tốt
\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)
\(=\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}\)
\(=a+\sqrt{a}+1\)
- \(=\frac{\sqrt{35}\left(\sqrt{5}+\sqrt{7}\right)}{\sqrt{35}}=\sqrt{5}+\sqrt{7}\)
- \(=\frac{4\sqrt{2}-3\sqrt{3}+1}{\sqrt{3}\sqrt{2}}=\frac{4}{\sqrt{3}}+\frac{3}{\sqrt{2}}+\frac{1}{\sqrt{6}}\)
- \(=\frac{\left(3\sqrt{11}-3\sqrt{3}-\sqrt{11}\right)}{\sqrt{11}}+3\sqrt{2}=\frac{\left(2\sqrt{11}-3\sqrt{3}\right)}{\sqrt{11}}+3\sqrt{2}\)\(=\frac{2\sqrt{11}-3\sqrt{3}+3\sqrt{22}}{\sqrt{11}}\)
câu c bạn làm nhầm đề bài r kìa Hoàng Anh Tuấn
\(\sqrt{18}=3\sqrt{2}\) chứ sao lại bằng \(3\sqrt{3}\)đc