Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT: 1 đt cắt 2 đường thẳng...sole trong=nhau
Kl:2đt đó //
b)Gt:1đt cắt 2 đt//
Kl:2 góc sole trong=nhau
Ta có: \(\widehat {{A_1}} = \widehat {{B_1}}\) (gt)
\(\widehat {{A_3}} = \widehat {{A_1}}\) (2 góc đối đỉnh)
\( \Rightarrow \widehat {{A_3}} = \widehat {{B_1}}\) ( cùng bằng \(\widehat {{A_1}}\))
Mà \(\widehat {{A_2}} + \widehat {{A_3}} = 180^\circ ;\widehat {{B_1}} + \widehat {{B_4}} = 180^\circ \) ( 2 góc kề bù)
\( \Rightarrow \widehat {{A_2}} = \widehat {{B_4}}\)
Giả thiết: a//b
c cắt a và b tại A và B
Kết luận: \(\widehat{A_1}=\widehat{B_2}\)
Giả thiết:
Cho đường thẳng a,b,ca,b,c
Đường thẳng cc cắt đường thẳng a,ba,b lần lượt tại A,BA,B
ˆA1=ˆB1A1^=B1^
Kết luận:
ˆA2=ˆB1A2^=B1
Chứng minh:
Ta có: ˆA1=ˆB1A1^=B1^ (giải thiết)
Mà ˆA1=ˆA2A1^=A2^ (đối đỉnh)
⇒ˆA2=ˆB1(=ˆA1)⇒A2^=B1^(=A1^)
Mà ˆA2A2^ và ˆB1B1^ ở vị trí so le tron
⇒⇒ đpcm.
gt |1 đt cắt 2 đt //
-------------------------------------------
kl |tạo ra 2 cặp góc slt = nhau
a b c B 1 4 2 3 A 1 2 3 4
Giả thiết: c cắt hai đường thẳng phân biệt là a và b
A2=B1
Kết luận: A1=B1;B4=A3
A4=B2;B3=A2
Giải
Ta có:
Góc A1=A2 ( đối đỉnh ) (1)
Lại có: A2=B1 ( gt ) (2)
Từ (1) và (2) => A1=B1
Lí luận tương tự với các góc còn lại từ đó => đpcm
Chúc bạn học tốt!