K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Ta thấy ngay \(\Delta AIK\sim\Delta ACB\left(g-g\right)\)

Vậy tỉ số diện tích hai tam giác bằng bình phương tỉ số đồng dạng.

Do góc A = 60o nên \(\frac{AK}{AB}=cos60^o=\frac{1}{2}\)

Vậy thì \(\frac{S_{AIK}}{S_{ABC}}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\Rightarrow S_{AIK}=160:4=40\left(cm^2\right)\)

23 tháng 10 2022

tại sao lại AK/AB = cos60* =1/2

 

16 tháng 8 2016

K A B C H I

a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)

=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.

b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C

Lại có I nằm giữa AC => K nằm giữa A và C

16 tháng 8 2016

a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)

b) \(\Delta ABC\) cân tại điểm A.

\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn

=> A nằm trên mặt phẳng chứa A bờ BC.

\(\Rightarrow\Delta AHC\approx\Delta BKC\)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)

\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)

Vậy K nằm giữa A và C

21 tháng 11 2022

a: Vì góc AKI=90 độ

nên K nằm trên đường tròn đường kính AI

b: Gọi G là trung điểm của AK

góc GKH=góc GKI+góc HKI

=góc GIK+góc HBI

=góc BIH+góc HBI=90 độ

=>HK là tiếp tuyến của (G)

20 tháng 8 2016

A B C D H K

Từ B kẻ BD vuông góc với BD , cắt CA tại D. 

=> Tam giác BCD vuông tại B có đường trung tuyến AB

=> AB = AC = AD

Ta có : \(\begin{cases}AH\text{//}BD\\AC=AD\end{cases}\) => AH là đường trung bình của tam giác BCD

=> \(AH=\frac{1}{2}BD\Rightarrow AH^2=\frac{BD^2}{4}\Rightarrow BD^2=4AH^2\)

Áp dụng hệ thức về cạnh trong tam giác vuông BDC có : 

\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\Leftrightarrow\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\) 

24 tháng 8 2016

he thuc lg la ra ngay

4 tháng 7 2019

A B C D K 1 2 1 2 H

a)

Xét tam giác vuông CIH và tam giác vuông CBK có: 

có góc C chung

=> \(\Delta CIH~\Delta CBK\)( góc -góc)

=> \(\frac{CI}{CB}=\frac{CH}{CK}\Rightarrow CI.CK=CB.CH\) (1)

Mặt khác: Xét tam giác ABC  vuoonh tại A và có đường cao AH

=> \(AC^2=CH.CB\)( hệ thức lượng trong tam giác vuông) (2)

Từ (1) và (2) => \(CI.CK=CA^2\)

b)  Do D đối xứng với A qua H

=> HA=HD mà AH vuông BC

=> BC là đường trung trực AD

=> AB=DB, AC= DC

Xét tam giác CAB và Tam giác CDB có: BC chung, AB=BD, AC=DC

=> \(\Delta CAB=\Delta CDB\) ( c-c-c)

=> \(\widehat{B_1}=\widehat{B_2}\)(3) 

 và \(\widehat{CDB}=\widehat{CAB}=90^o\) ( các góc tương ứng bằng nhau)

Xét tứ giác CAKB có: \(\widehat{CAB}=\widehat{CKB}=90^o\)

=> TỨ giác CAKB nội tiếp  ( vì có hai góc nội tiếp chắn một cung bằng nhau)

=> \(\widehat{B_1}=\widehat{K_1}\)(4)

Xét tứ giác CKBD có: \(\widehat{CDB}+\widehat{CKB}=90^o+90^o=180^o\)

=> Tứ giác CKBD nội tiếp ( vì có tổng  hai góc đối bằng 180^o)

=> \(\widehat{B_2}=\widehat{K_2}\)(5)

Từ (3), (4), (5)

=> \(\widehat{K_2}=\widehat{K_1}\)

=> KC là phân giác góc AKD

7 tháng 9 2016

giúp mik vs