Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy ngay \(\Delta AIK\sim\Delta ACB\left(g-g\right)\)
Vậy tỉ số diện tích hai tam giác bằng bình phương tỉ số đồng dạng.
Do góc A = 60o nên \(\frac{AK}{AB}=cos60^o=\frac{1}{2}\)
Vậy thì \(\frac{S_{AIK}}{S_{ABC}}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\Rightarrow S_{AIK}=160:4=40\left(cm^2\right)\)
K A B C H I
a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)
=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.
b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C
Lại có I nằm giữa AC => K nằm giữa A và C
a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)
b) \(\Delta ABC\) cân tại điểm A.
\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn
=> A nằm trên mặt phẳng chứa A bờ BC.
\(\Rightarrow\Delta AHC\approx\Delta BKC\)
\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)
\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)
Vậy K nằm giữa A và C
a: Vì góc AKI=90 độ
nên K nằm trên đường tròn đường kính AI
b: Gọi G là trung điểm của AK
góc GKH=góc GKI+góc HKI
=góc GIK+góc HBI
=góc BIH+góc HBI=90 độ
=>HK là tiếp tuyến của (G)
A B C D H K
Từ B kẻ BD vuông góc với BD , cắt CA tại D.
=> Tam giác BCD vuông tại B có đường trung tuyến AB
=> AB = AC = AD
Ta có : \(\begin{cases}AH\text{//}BD\\AC=AD\end{cases}\) => AH là đường trung bình của tam giác BCD
=> \(AH=\frac{1}{2}BD\Rightarrow AH^2=\frac{BD^2}{4}\Rightarrow BD^2=4AH^2\)
Áp dụng hệ thức về cạnh trong tam giác vuông BDC có :
\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\Leftrightarrow\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
A B C D K 1 2 1 2 H
a)
Xét tam giác vuông CIH và tam giác vuông CBK có:
có góc C chung
=> \(\Delta CIH~\Delta CBK\)( góc -góc)
=> \(\frac{CI}{CB}=\frac{CH}{CK}\Rightarrow CI.CK=CB.CH\) (1)
Mặt khác: Xét tam giác ABC vuoonh tại A và có đường cao AH
=> \(AC^2=CH.CB\)( hệ thức lượng trong tam giác vuông) (2)
Từ (1) và (2) => \(CI.CK=CA^2\)
b) Do D đối xứng với A qua H
=> HA=HD mà AH vuông BC
=> BC là đường trung trực AD
=> AB=DB, AC= DC
Xét tam giác CAB và Tam giác CDB có: BC chung, AB=BD, AC=DC
=> \(\Delta CAB=\Delta CDB\) ( c-c-c)
=> \(\widehat{B_1}=\widehat{B_2}\)(3)
và \(\widehat{CDB}=\widehat{CAB}=90^o\) ( các góc tương ứng bằng nhau)
Xét tứ giác CAKB có: \(\widehat{CAB}=\widehat{CKB}=90^o\)
=> TỨ giác CAKB nội tiếp ( vì có hai góc nội tiếp chắn một cung bằng nhau)
=> \(\widehat{B_1}=\widehat{K_1}\)(4)
Xét tứ giác CKBD có: \(\widehat{CDB}+\widehat{CKB}=90^o+90^o=180^o\)
=> Tứ giác CKBD nội tiếp ( vì có tổng hai góc đối bằng 180^o)
=> \(\widehat{B_2}=\widehat{K_2}\)(5)
Từ (3), (4), (5)
=> \(\widehat{K_2}=\widehat{K_1}\)
=> KC là phân giác góc AKD