a b M 55độ 35độ O N

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Sửa lại :

Trên tia đối của tia Ma lấy N ; trên tia đối của tia Nb lấy C.

Vẽ Ox // a (1). Ta có :

$\widehat{OMB}=\widehat{MOx}=55^o$ (so le trong)

Mà $\widehat{MOx}+\widehat{xON}=\widehat{MON}=90^o$

$=>55^o+\widehat{xON}=90^o$

$=>\widehat{xON}=35^o$

$=>\widehat{xON}=\widehat{ONC}=35^o$

Mà hai góc này nằm ở vị trí so le trong

=> Ox // b (2)

Từ (1)(2) => a // b.

21 tháng 6 2017

Trên tia đối của tia Ma lấy B ; trên tia đối của tia Nb lấy C.

Vẽ Ox // a (1). Ta có :

$\widehat{OMB}=\widehat{MOx}=55^o$ (so le trong)

Mà $widehat{MOx}+\widehat{xOn}=\widehat{MON}=90^o$

$=>\55^o+\widehat{xOn}=90^o$

$=>\widehat{xOn}=35^o$

$=>\widehat{xOn}=\widehat{ONC}=35^o$

Mà hai góc này nằm ở vị trí so le trong

=> Ox // b (2)

Từ (1)(2) => a // b.

21 tháng 10 2017

a) Ta có: góc OBC = BOx = 50 độ

Mà 2 góc này so le trong

=> Ox//BC (đpcm)

Vậy Ox// BC

Tự vẽ hình nhoa!!! Mk chỉ làm đc phần a thui

24 tháng 10 2017

uk

28 tháng 6 2017

Đêm qua em hỏi, chị lại ko nghĩ là em :V

Bài 1:

A D C B M N 1 1 1 2

*Hình ảnh chỉ mang tính chất minh họa

a) Ta có: \(xy\)\(//BD\)

\(BD\)là phân giác \(\widehat{ABC}\) \(\Rightarrow BD\)cắt \(BC\)

\(\Rightarrow xy\)cắt \(BC\) ( gọi giao điểm là M )

b) Ta có: \(\widehat{A_1}=\widehat{B_1}\left(slt\right)\)\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{B_2}\left(1\right)\)

Mặt khác \(\widehat{M_1}=\widehat{B_2}\left(đvi\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\widehat{A_1}=\widehat{M_1}\)

c) Xét \(\Delta BAM\)\(\widehat{A_1}=\widehat{M_1}\)(câu b)

\(\Rightarrow\Delta BAM\)cân tại \(B\)

\(\Delta BAM\)cân tại \(B\)\(BN\) là đường phân giác

=> \(BN\)đồng thời là đường cao của \(\Delta BAM\)

=> Đpcm

Bài 2:

x y B 150 K H I

*Hình ảnh chỉ mang tính chất minh họa (Nhinf cais anhr thaays gowms quas)

a) Ta cos: \(AH\) vuông góc \(By\)\(;\) \(CK\)vuông góc \(Bx\)

Mà Bx tạo với tia By một góc 150 độ => Bx cắt By tại B

=> AH cắt CK ( tại giao điểm I )

b) Ta có: \(\widehat{ABC}=150^o\Rightarrow\widehat{ABH}=30^o\)

\(\Rightarrow\widehat{BAH}=90-\widehat{ABH}=60^o\)

\(\Rightarrow\widehat{AIC}=\widehat{AIK}=90-\widehat{BAH}=30^o\)

@@ Cách khác

Ta có: \(\widehat{HBK}=\widehat{ABC}=150^o\left(đđ\right)\)

Xét tứ giác BHIK có:

\(\widehat{AIC}=360-\widehat{IHB}-\widehat{IKB}-\widehat{HBK}\) (Nếu chưa học cái này thì chứng minh bằng cách chia tứ giác thành 2 tam giác)

\(\Leftrightarrow\widehat{AIC}=360-90-90-150=30^o\)

27 tháng 6 2017

B1 :a)BC ko song song với BD vì chung B

->BC ko sog sog xy (xy//BD) nên cắt BC tại M

b)

c)NBA+ANB+BNA=180^o

NMB+MBN+BNM=180^o

AMB=MAB; B1=B2 (BN pg ABM)

Nen N1=N2;N1+N2=180^o ->ĐPCM

mỏi quá r` mai nghĩ tiếp mà vẽ hộ tui cái hình bài 2 vs

23 tháng 4 2018

A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABM\)\(\Delta ACM\) có :

AB=AC (gt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)

b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:

\(\widehat{H}=\widehat{K}\left(=90^o\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BM=MC(gt)

Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)

=>BH = CK (2 cạnh tương ứng)

17 tháng 8 2020

a) Ta có: OA ⊥ OM (GT)

\(\Rightarrow\widehat{AOM}=90^0\)

Ta có: OB ⊥ ON (GT)

\(\Rightarrow\widehat{BON}=90^0\)

b)

Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)

=> Góc AON = Góc BOM

17 tháng 8 2020

THANKhihi

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

mà góc ABD=60 độ

nên ΔBAD đều

b: Xét ΔIBC cógóc IBC=góc ICB

nên ΔIBC cân tại I

c: Xét ΔBAI và ΔBDI có

BA=BD

góc ABI=góc DBI

BI chung

Do đó: ΔBAI=ΔBDI

Suy ra: góc BDI=90 độ

=>DI vuông góc với BC

Ta có: ΔIBC cân tại I

mà ID là đường cao

nên D là trung điểm của BC

d: \(BC=AB:\sin C=12\left(cm\right)\)

\(AC=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)

a: Ta có: O là tâm đường tròn ngoại tiếp ΔABC 

nên OA=OB=OC

Ta có: ΔBAC vuông tại A

nên A nằm trên đường tròn đường kính BC

=>O thuộc BC

b: Sửa đề: \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)

Xét (O) có

góc BCA là góc nội tiếp chắn cung BA

góc BDA là góc nội tiếp chắn cung BA

Do đó: \(\widehat{BCA}=\widehat{BDA}\left(1\right)\)

Xét ΔOAC có OA=OC

nên ΔOAC cân tại O

=>\(\widehat{OAC}=\widehat{OCA}\)

=>\(\widehat{AOB}=2\cdot\widehat{BCA}\)(2)

Từ (1) và (2) suy ra \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)

c: Xét (O) có

góc AOD là góc ở tâm chắn cung AD

góc ACD là góc nội tiếp chắn cung AD

Do đó: \(\widehat{AOD}=2\cdot\widehat{ACD}\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

DO đo:ΔADB=ΔAEC

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

c: Xét ΔIEB vuông tại E và ΔIDC vuông tại D có

BE=CD
\(\widehat{IBE}=\widehat{ICD}\)

Do đó: ΔIEB=ΔIDC

Suy ra: IB=IC

hay I nằm tren đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,I,M thẳng hàng

27 tháng 7 2016

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)

\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

\(=>m=5\)

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

\(=>n=3\)

27 tháng 7 2016

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

=> m =5

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

=> n = 3

16 tháng 10 2017

k khó đâu bnn ak

16 tháng 10 2017

Trả lời giúp vs đi!!!!