K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Đặt \(A=-3x^2+2x-1\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\)

Ta có: \(-3\left(x-\dfrac{1}{3}\right)^2\le0\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le\dfrac{-2}{3}\)

Dấu " = " xảy ra khi \(-3\left(x-\dfrac{1}{3}\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MAX_A=\dfrac{-2}{3}\) khi \(x=\dfrac{1}{3}\)

8 tháng 6 2017

Gtnn và gtln là j vậy ?

20 tháng 8 2021

\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)

\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)

Dấu ''='' xảy ra khi x = 3/4 

Vậy GTNN của A bằng 7/8 tại x = 3/4 

5 tháng 11 2017

A=3x - 3x2 -1

⇔x + 2x -2x2 - x2 - 2 + 1

⇔(x - 2x2 +1) +(2x-2)

⇔(x-1)2 +2(x-1)

⇔(x-1)(x-1+2)

⇔(x-1)(x+1)

⇔ x2 -1 ≥-1

dấu "=" xảy ra khi

x2 =0 ⇔ x =0

vậy MinA= -1 khi x =0

5 tháng 11 2017

\(3x-3x^2-1=-3\left(x^2-x+\dfrac{1}{3}\right)=-3\left(x^2-2x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{3}\right)=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)Ta có

\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{2}\right)\le0\Rightarrow-3\left(x-\dfrac{1}{2}\right)-\dfrac{1}{4}\le-\dfrac{1}{4}\)

Vậy Amin=\(-\dfrac{1}{4}\) đạt được khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

Nếu sai thì thui nhé tại mình mới hkhaha

2 tháng 9 2017

a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)

Dấu bằng xảy ra  \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)

                                    \(x=\frac{-5}{2}=-2,5\)

Vậy GTLN của A bằng -13,5 khi x = -2,5

b)  \(B=3x-2x^2\)

\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)

\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)

\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)

Dấu bằng xảy ra  \(\Leftrightarrow\)\(x-0,75=0\)

                                    \(x=0,75\)

Vậy GTLN của B bằng 1,125 khi x = 0,75

3 tháng 9 2017

kjkkm

13 tháng 7 2017

Ta có : A = x2 - x + 2

=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

13 tháng 7 2017

A = x2 - x + 2 = x2 - 2.x.1 + 1+ 1 = ( x+1)2 + 1

Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)

 => ( x+1)2 + 1 \(\ge\)1  khi với mọi x)

Dấu "=" xảy ra khi ( x+1)2 = 0

 => x + 1 = 0 -> x= -1

Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1

7 tháng 8 2016

\(B=2x^2+8x+1\)

\(=2\times\left(x^2+2\times x\times2+2^2-2^2+\frac{1}{2}\right)\)

\(=2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\)

\(\left(x+2\right)^2\ge0\)

\(\left(x+2\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)

\(2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\ge-7\)

Vậy Min B = -7 khi x = -2

12 tháng 12 2016

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

12 tháng 12 2016

Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)