
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)
\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)
\(\Leftrightarrow2n^2-8n-86=0\)
\(\Leftrightarrow n^2-4n=43\)
Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)
\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).
Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).
Mà \(43\)chia cho \(3\)dư \(1\)
do đó phương trình đã cho không có nghiệm tự nhiên.
b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)
\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).
mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)
suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố
(do \(n^2+h^2+b^2+k^2>2\)).



a=1+3+32+33+...+310
3a=3.(1+3+32+33+...+310)
3a=3+32+33+34+...+311
3a-a=(3+32+33+34+...+311)-(1+3+32+33+...+310)
2a=311-1
a=(311-1):2
a=88573
2.88573+1=3n
177146+1=3n
311=3n
=>n=11

Ta có \(A=\frac{2n^2+1}{n^2-1}=\frac{2\left(n^2-1\right)+3}{n^2-1}=2+\frac{3}{n^2-1}\)
Để \(A\in Z\)thì \(2+\frac{3}{n^2+1}\)là số nguyên
\(\Rightarrow\frac{3}{n^2+1}\in Z\)
\(\Rightarrow3⋮n^2+1\)
Hay \(n^2+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta lập bảng
n + 1 2 n 1 -3 3 -1 0 O 2 O
Vậy \(x\in\left\{0;\sqrt{2}\right\}\)
đề j mà buồn cười á
2n-1=A là s????