
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu a bạn chứng minh được rồi là xong nha !!!!!!!
Câu b)
\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)
\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được:
=> \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)
=> \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
DẤU "=" Xảy ra <=> \(a=b=c\)
Vậy ta có ĐPCM !!!!!!!!

( a + b + c )^2 = 3(ab+bc+ac)
<=>a2+b2+c2+2ab+2bc+2ac=3ab+3bc+3ac
<=>a2+b2+c2-ab-bc-ac=0
<=>2a2+2b2+2c2-2ab-2bc-2ac=0
<=>a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0
<=>(a-b)2+(b-c)2+(c-a)2=0
<=>a-b=0 và b-c=0 và c-a=0
<=>a=b=c

\(\left(a+b+c\right)^2+12=4\left(a+b+c\right)+2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2+12=4a+4b+4c\\ \Leftrightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\\ \Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\Leftrightarrow a=b=c=2\left(dpcm\right)\)


a) Xét \(\Delta ABC\) và \(\Delta HBA\) :
Có \(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)
\(\widehat{B}chung\)
\(\Rightarrow\) \(\Delta ABC\) đồng dạng với \(\Delta HBA\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)
\(\Rightarrow\) \(AB^2=HB\cdot BC\)
Xét \(\Delta ABC\) và \(\Delta HAC\):
Có \(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)
\(\widehat{C}chung\)
\(\Rightarrow\)\(\Delta ABC\) đồng dạng với \(\Delta HAC\) (g.g) \(\Rightarrow\) \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\) \(\Rightarrow\) \(AC\cdot AC=BC\cdot HC\) \(\Rightarrow\) \(AC^2=BC\cdot HC\) b)


\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
a²+b²+c²=ab+bc+ac
<=>2.(a2+b2+c2)=2.(ab+bc+ac)
<=>2a2+2b2+2c2=2ab+2bc+2ac
<=>2a2+2b2+2c2-2ab-2bc-2ac=0
<=>a2-2ab+b2+b2-2bc+c2+a2-2ac-c2=0
<=>(a-b)2+(b-c)2+(a-c)2=0
<=>a-b=0 và b-c=0 và a-c=0
<=>a=b và b=c và c=a
<=>a=b=c
=>điều phải chứng minh