\(\left(x+1\right)\)3 =27 

  2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2015

Nguyễn Ngọc Sáng chắc lâu lm đấy , thôi thì bn chọn đỗ phương linh đi ^^

15 tháng 8 2015

jjj           

b: =>3|x-5|=8+4=12

=>|x-5|=4

=>x-5=4 hoặc x-5=-4

=>x=9 hoặc x=1

d: =>2x+6=3-3x-2

=>2x+6=1-3x

=>5x=-5

hay x=-1

e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)

\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)

mà x>8

nên \(x\in\left\{10;17\right\}\)

4 tháng 10 2019

\(\left(2x+1\right)^3=125\)

\(\left(2x+1\right)^3=5^3\)

\(2x+1=5\)

\(2x=4\)

\(x=2\)

\(b,x^6=x^2\)

\(x^6-x^2=0\)

\(x^2\cdot\left(x^4-1\right)=0\)

\(\orbr{\begin{cases}x^2=0\\x^4-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(c\text{​​}\text{​​}\text{​​}\text{​​},\left(x-2\right)\cdot\left(x-5\right)=0\)

\(\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)

\(d,x^{10}-x^5=0\)

\(x^5\cdot\left(x^5-1\right)=0\)

\(\orbr{\begin{cases}x^5=0\\x^5=1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

\(e,\left(x-5\right)^4=\left(x-5\right)^6\)

\(\left(x-5\right)^4-\left(x-5\right)^6=0\)

\(\left(x-5\right)^4\cdot\left[1-\left(x-5\right)^2\right]=0\)

\(\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm1+5\end{cases}}}\)

\(\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)

\(\left(2x+1\right)^3=125\Rightarrow\left(2x+1\right)^3==5^3\Rightarrow2x+1=5\)

\(\Rightarrow2x=5-1=4\Rightarrow x=4:2=2\)

\(x^6=x^2\Rightarrow x^2.x^4=x^2\)Vì vậy nên \(x=\pm1\)

\(\left(x-2\right)\left(x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\Rightarrow x=0+2=5\\x-5=0\Rightarrow X=0+5=5\end{cases}}\)

a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)

\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)

=>x=10

b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)

hay \(x\in\left\{0;1;2\right\}\)

c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)

\(\Leftrightarrow6-x=0\)

hay x=6

8 tháng 8 2017

1. a, 3x + 2 \(⋮2x-1\)
Có 3(2x - 1) \(⋮2x-1\)
Và 2(3x - 2) \(⋮2x-1\)
=> 6x - 4 - 6x + 3 \(⋮2x-1\)
<=> -1 \(⋮2x-1\)
=> 2x - 1 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> 2x = 2; 0
=> x = 1; 0 (thỏa mãn)
@Lớp 6B Đoàn Kết

8 tháng 8 2017

1. b, x2 - 2x + 3 \(⋮x-1\)
<=> x(x - 2) + 3 \(⋮x-1\)
<=> x(x - 1) - x + 3 \(⋮x-1\)
<=> x(x - 1) - (x - 1) - 2 \(⋮x-1\)
<=> (x - 1)2 - 2 \(⋮x-1\)
<=> -2 \(⋮x-1\)
=> x - 1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> x = 2; 0; 3; -1 (thỏa mãn)
@Lớp 6B Đoàn Kết

17 tháng 2 2019

thằng giang mốc đúng ko

17 tháng 2 2019

=-1+(4-7)+(10-13)+(16-19)+...+(94-97)+(100-103)

=-1+(-3)+(-3)+(-3)+...+(-3)+(-3)(17 cặp)

=-1+(-3)*17

=-1+(-51)

=-52

d: =>x+5=0 và 3-y=0

=>x=-5 hoặc y=3

e: =>x-2=0 và y+1=0

=>x=2 và y=-1

15 tháng 7 2018

\(3^x.3^3=81\)

<=> \(3^x=3\)

<=> \(x=1\)

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)